Download presentation
Presentation is loading. Please wait.
Published byErick Harvey Modified over 8 years ago
1
Medical data mining Linking diseases, drugs, and adverse reactions Lars Juhl Jensen
2
unstructured data
4
structured data
5
Jensen et al., Nature Reviews Genetics, 2012
6
individual hospitals
7
central registries
9
opt-out
10
opt-in
11
Danish registries
12
civil registration system
13
CPR number
14
established in 1968
15
Jensen et al., Nature Reviews Genetics, 2012
16
national discharge registry
17
14 years
18
6.2 million patients
19
45 million admissions
20
68 million records
21
119 million diagnosis
22
ICD-10
23
Jensen et al., Nature Reviews Genetics, 2012
24
reimbursement
25
not research
26
diagnosis trajectories
27
naïve approach
28
comorbidity
29
Jensen et al., Nature Reviews Genetics, 2012
30
confounding factors
31
“known knowns”
32
gender
33
age
34
type of hospital encounter
35
Jensen et al., submitted, 2013 FemaleMale In-patient Out-patient Emergency room
36
“known unknowns”
37
smoking
38
diet
39
“unknown unknowns”
40
reporting biases
41
disease clustering
43
temporal correlation
44
Jensen et al., submitted, 2013
45
diagnosis trajectories
46
Jensen et al., submitted, 2013
47
epilepsy
48
Jensen et al., submitted, 2013
49
gout
50
Jensen et al., submitted, 2013
51
electronic health records
52
structured data
53
Jensen et al., Nature Reviews Genetics, 2012
54
unstructured data
56
free text
57
Danish
58
busy doctors
59
psychiatric patients
60
delusions
61
text mining
62
named entity recognition
63
custom dictionaries
64
diseases
65
drugs
66
adverse drug events
67
expansion rules
68
orthographic variation
69
typos
70
“negative modifiers”
71
negations
72
family members
73
detailed disease profiles
74
Roque et al., PLOS Computational Biology, 2011 3262638254947 Assigned codes Text mined codes
75
comorbidity
76
Roque et al., PLOS Computational Biology, 2011
77
patient stratification
78
Roque et al., PLOS Computational Biology, 2011
79
cluster characterization
80
Roque et al., PLOS Computational Biology, 2011
81
adverse drug reactions
82
structured data
83
medication
84
clinical narrative
85
possible ADRs
86
semi-structured data
87
SPC Summary of Product Characteristics
88
drug indications
89
known ADRs
90
temporal correlation
91
link drugs to ADRs
92
complex filtering
93
Eriksson et al., submitted, 2013
94
new ADRs
95
Eriksson et al., submitted, 2013 Drug substanceADEp-value ChlordiazepoxideNystagmus4.0e-8 SimvastatinPersonality changes8.4e-8 DipyridamoleVisual impairment4.4e-4 CitalopramPsychosis8.8e-4 BendroflumethiazideApoplexy8.5e-3
96
ADR frequencies
97
Eriksson et al., submitted, 2013
98
heavily medicated
99
Eriksson et al., submitted, 2013
100
ADR dose dependency
101
Eriksson et al., submitted, 2013
102
ADR similarity
103
Eriksson et al., submitted, 2013
104
drug repurposing
105
Campillos, Kuhn et al., Science, 2008
106
Disease trajectories Anders Bøck Jensen Tudor Oprea Pope Moseley Søren Brunak Adverse drug reactions Robert Eriksson Thomas Werge Søren Brunak EHR text mining Peter Bjødstrup Jensen Robert Eriksson Henriette Schmock Francisco S. Roque Anders Juul Marlene Dalgaard Massimo Andreatta Sune Frankild Eva Roitmann Thomas Hansen Karen Søeby Søren Bredkjær Thomas Werge Søren Brunak Acknowledgments
107
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.