Download presentation
Presentation is loading. Please wait.
Published byAshlee Crawford Modified over 9 years ago
1
1 Helping online communities to semantically enrich folksonomies ISICIL, mai 2010 Freddy Limpens, Fabien Gandon Edelweiss, INRIA Sophia Antipolis {freddy.limpens, fabien.gandon}@inria.fr Michel Buffa Kewi, I3S, Univerité Nice-Sophia Antipolis Edelweiss
2
2 How to turn folksonomies......into comprehensible topic structures ? ? pollution Soil pollutions has narrower pollutant Energy related
3
3 … without overloading users
4
4 … and by collecting all user's expertise into the process
5
5 Our approach Integrate usage-analysis for a tailored solution Supporting diverging points of view Automatic processings + Human expertise through user-friendly interfaces
6
6 Concrete scenario Experts produce docs + tag Archivists centralize + tag Public audience read + tag
7
1. Modeling statements about tags
8
8 Supporting diverging points of view car pollution skos:related
9
9 car pollution John Paul Supporting diverging points of view agrees disagrees skos:related
10
Supporting diverging points of view 10 car pollution skos:related John Paul hasApproved hasRejected tagSemanticStatement (named graph)
11
Supporting diverging points of view
12
2. folksonomy enrichment Life cycle
13
13 Dataset DeliciousTheseNetCADIC What Bookmarks of users of tag "ademe" Keywords for Ademe's PhD projects Archivists indexing lexicon # tags 101565831439 # posts 1013 14254675 # (restricted tagging) 3015 1016025515 # users 812 14251
14
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
15
15 pollution pollutant pollution Soil pollutions 1. String-based metrics
16
16 Evaluation of 30 edit distances Combining the best metrics Needs complement ! 1. String-based metrics
17
17 1. String-based metrics Evaluated against Ademe expert's point of view
18
Related55,10% Broader/narrower32% CloseMatch12,82% Result on full dataset
19
Node size ↔ InDegree ◉ tags (delicious + thesenet) ◉ mot-clés svic
20
Result on full dataset Node size ↔ InDegree ◉ tags (delicious + thesenet) ◉ mot-clés svic
21
21 Fig. Markines et al. (2009) Association via : Users tags 2. Tri-partite structure of folksonomies
22
tag1tag2tag3 tag1freq (tag1)cooc (tag1, tag2)cooc (tag1, tag3) tag2cooc (tag2, tag1)freq (tag2)cooc (tag2, tag3) tag3cooc (tag3, tag1)cooc (tag3, tag2)freq (tag3) 2. Tri-partite structure of folksonomies Tag-based association : => gives "related" relations
23
Example result on CADIC dataset:
24
2. Tri-partite structure of folksonomies User-based association (Mika) : environnement agriculture U1 U1 U2 U2 U3 U3 U4 U4 U6 U6 => gives "subsumption" relations
25
Example result on Delicious dataset: Arrows mean "has broader" thickness ≈ weight
26
TheseNet dataset: Arrows mean "has broader" thickness ≈ weight
27
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
28
28 Embedding structuring tasks within everyday activity (searching e.g)
29
29 Embedding structuring tasks within everyday activity (searching e.g)
30
30 Capturing user's point of view
31
31 Experimentation ADEME
32
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
33
33 Conflict detection environment pollution narrower broader
34
34 Conflict detection environment pollution narrower broader Using rules e.g: IF num(narrower)/num(broader) ≥ c THEN narrower wins ELSE 'more generic' wins
35
35 Conflict detection environment pollution narrower broader related broader narrower more generic
36
Ademe experimentation Total number of relations125 Contradictory43 Consensual14 Only rejected (to be deleted ?)2 Only proposed by computer (no user review)52 Debated (approved AND rejected at least once)14
37
Example result on Ademe's experimentation subset
39
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
40
40 environment pollution related ReferentUser Global structuring by Referent hasApproved
41
ADDING TAGS Automatic processing User-centric structuring User-centric structuring Detect conflicts Global structuring Global structuring Flat folksonom y Structured folksonom y Folksonomy enrichment life-cycle
43
43 Take away message (conclusion)
44
44 Help communities structure their tags What we do :
45
45 Our contributions: Usages analysis Automatic processing of tags Tag structuring embedded in every-day tools Supporting multi-points of view
46
46 Future work Interfaces : to capture user-centric contributions Global administrations (Referent User) Tag searching Real-scale experimentation Mapping between knowledge representation (Gemet thesaurus – Tags – CADIC e.g.) Moving to other socio-structural models
47
47 Thank you ! freddy.limpens@inria.fr http://www-sop.inria.fr/members/Freddy.Limpens/ http://isicil.inria.fr
48
48
49
49 What is a tag ?
50
50 Tagging model
51
51 Tagging model
52
52 Hypotheses Tag-link is thematic Tags are concept- candidate
53
53 Supporting diverging points of view
54
54 An eco-system of agents
55
55
56
56 Tags are nice to organize your own resources...
57
57... but also to get involved in the organization of shared resources
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.