Presentation is loading. Please wait.

Presentation is loading. Please wait.

Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student.

Similar presentations


Presentation on theme: "Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student."— Presentation transcript:

1 Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student

2 Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student Conversation Café Math Practice Problems Learning Checkpoints

3 Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student Math Practice Problems

4 Digital Transformation Math Practice Problems

5 Digital Transformation Math Practice Problems

6 Digital Transformation Math Practice Problems

7 Digital Transformation Math Practice Problems Type: F Options: Number Meta-author: GregBaird Meta-proof: AlexPerez Meta-comment: Var: a = 5..16 Var: x.mult = 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5 Var: x.smult = 1,1,2,1,2,3,1,2,3,4,1,2,3,4,5 Var: a.d1 = 1 Var: a.d2 = 2 Var: a.d3 = 3 Var: a.d4 = 4 Var: a.d5 = 5 9) `$\mbox{Given the following set of data, find the mean:}$` `$\mbox{{$eval(($a$*$x.mult$)-($a.d3$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d1$*$x.smult$),0.), $eval($a$*$x.mult$,0.), $eval(($a$*$x.mult$)+($a.d2$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d3$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d2$*$x.smult$),0.), $eval($a$*$x.mult$,0.), $eval($a$*$x.mult$,0.), $eval(($a$*$x.mult$)- ($a.d3$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d2$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d4$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d2$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d1$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d1$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d2$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d4$*$x.smult$),0.), $eval($a$*$x.mult$,0.), $eval(($a$*$x.mult$)-($a.d5$*$x.smult$),0.), $eval(($a$*$x.mult$)-($a.d2$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d4$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d2$*$x.smult$),0.), $eval(($a$*$x.mult$)+($a.d3$*$x.smult$),0.)}}$` `$\mbox{mean }=$`________ @ [HTML]`$\mbox{mean = $eval(((($a$*$x.mult$)-($a.d5$*$x.smult$))+(($a$*$x.mult$)-($a.d4$*$x.smult$))+(($a$*$x.mult$)-($a.d3$*$x.smult$))+(($a$*$x.mult$)- ($a.d3$*$x.smult$))+(($a$*$x.mult$)-($a.d2$*$x.smult$))+(($a$*$x.mult$)-($a.d2$*$x.smult$))+(($a$*$x.mult$)-($a.d2$*$x.smult$))+(($a$*$x.mult$)- ($a.d2$*$x.smult$))+(($a$*$x.mult$)-($a.d1$*$x.smult$))+(($a$*$x.mult$)- ($a.d1$*$x.smult$))+($a$*$x.mult$)+($a$*$x.mult$)+($a$*$x.mult$)+($a$*$x.mult$)+(($a$*$x.mult$)+($a.d1$*$x.smult$))+(($a$*$x.mult$)+($a.d2$*$x.smult$))+(($a$* $x.mult$)+($a.d2$*$x.smult$))+(($a$*$x.mult$)+($a.d2$*$x.smult$))+(($a$*$x.mult$)+($a.d3$*$x.smult$))+(($a$*$x.mult$)+($a.d3$*$x.smult$))+(($a$*$x.mult$)+($a.d 4$*$x.smult$))+(($a$*$x.mult$)+($a.d4$*$x.smult$)))/22,0.##). Also, if you're curious, median = $eval($a$*$x.mult$,0.), and there }$` `$\mbox{are two modes: $eval(($a$*$x.mult$)-($a.d2$*$x.smult$),0.) and $eval($a$*$x.mult$,0.).}$` [REF# ALG51.CR.1.09a1F] Click here to report a problem.[/HTML] a. ((($a$*$x.mult$)-($a.d5$*$x.smult$))+(($a$*$x.mult$)-($a.d4$*$x.smult$))+(($a$*$x.mult$)-($a.d3$*$x.smult$))+(($a$*$x.mult$)-($a.d3$*$x.smult$))+(($a$*$x.mult$)- ($a.d2$*$x.smult$))+(($a$*$x.mult$)-($a.d2$*$x.smult$))+(($a$*$x.mult$)-($a.d2$*$x.smult$))+(($a$*$x.mult$)-($a.d2$*$x.smult$))+(($a$*$x.mult$)- ($a.d1$*$x.smult$))+(($a$*$x.mult$)- ($a.d1$*$x.smult$))+($a$*$x.mult$)+($a$*$x.mult$)+($a$*$x.mult$)+($a$*$x.mult$)+(($a$*$x.mult$)+($a.d1$*$x.smult$))+(($a$*$x.mult$)+($a.d2$*$x.smult$))+(($a$* $x.mult$)+($a.d2$*$x.smult$))+(($a$*$x.mult$)+($a.d2$*$x.smult$))+(($a$*$x.mult$)+($a.d3$*$x.smult$))+(($a$*$x.mult$)+($a.d3$*$x.smult$))+(($a$*$x.mult$)+($a.d 4$*$x.smult$))+(($a$*$x.mult$)+($a.d4$*$x.smult$)))/22

8 Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student Learning Checkpoints

9 Digital Transformation Learning Checkpoints BYU Online Pilot Courses (Fall, 2012 – Winter, 2013) A HTG 100: American Heritage ENGL 312: Persuasive Writing ENGL 316: Technical Communication IHUM 202: Western Humanities 2 M COM 320: Communication in Organizational Settings MATH 110: College Algebra NDFS 100: Essentials of Human Nutrition PHSCS 105: Introductory Applied Physics PL SC 110: American Government & Politics PSYCH 111: Psychological Science REL C 324: The Doctrine & Covenants SOC 111: Introductory Sociology

10 Digital Transformation Learning Checkpoints Learning Checkpoint #1 (orientation session)  Introduce faculty, teaching assistants, and students  Overview course learning outcomes, structure, and how to succeed  Understand student goals, motives, and background; answer questions  Schedule Learning Checkpoint #2, based upon each student’s intended pace Learning Checkpoint #2 (~1/3 through course)  Review progress, comparing with student goals for the course  Provide positive and constructive feedback on assignments-to-date  Ask challenging questions to stimulate critical thinking and reinforce student learning  Answer student questions, suggesting review and/or additional resources (tutors, websites, etc.)  Schedule Learning Checkpoint #3, based upon the student’s intended pace Learning Checkpoint #3 (~2/3 through course)  Review progress, comparing with student goals for the course  Provide positive and constructive feedback on assignments-to-date  Ask challenging questions to stimulate critical thinking and reinforce student learning  Answer student questions, suggesting review and/or additional resources (tutors, websites, etc.)  Schedule Learning Checkpoint #4, based upon the student’s intended pace Learning Checkpoint #4 (before final exam)  Review progress, comparing with student goals for the course  Provide positive and constructive feedback on course assignments  Ask challenging questions to stimulate critical thinking and reinforce student learning  Discuss student readiness for the final exam (key concepts, sample questions)  Answer student questions, suggesting review and/or additional resources (tutors, websites, etc.)

11 Digital Transformation Learning Checkpoints

12 Digital Transformation Learning Checkpoints

13 Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student Conversation Café

14 Digital Transformation Conversation Café

15 Digital Transformation Conversation Café

16 Digital Transformation Conversation Café

17 Digital Transformation Conversation Café

18 Digital Transformation Conversation Café

19 Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student Conversation Café Math Practice Problems Learning Checkpoints


Download ppt "Digital Transformation Interactions for Deep and Meaningful Learning Student TeacherContent Student."

Similar presentations


Ads by Google