Download presentation
Presentation is loading. Please wait.
Published byLester Sanders Modified over 8 years ago
1
Simulations of associating polymers under shear J. Billen, M. Wilson, A.R.C. Baljon San Diego State University Funded by:
2
Outline Motivation: Shear banding Molecular dynamics/Monte Carlo simulation Sheared associating polymer networks Shear banding Topological changes Temperature SolGel
3
Shear Banding in Experiments on Associating Polymers Plateau in stress-shear curvetwo shear bands fixed wall moving wall distance shear rate stress velocity Material used: Polyethylene Oxide (with octadecyl alkane (hydrophobic) groups at chain ends) [J.Sprakel et al., Phys Rev. E 79, 056306 (2009)]
4
Molecular Dynamics / Monte Carlo Simulation
5
Hybrid MD / MC simulation (I) [A. Baljon et al., J. Chem. Phys., 044907 2007] Molecular dynamics simulation: Bead-spring model (Kremer-Grest) interactions within chain Monte Carlo: Junctions between end groups Lennard-Jones interaction between all beads FENE: between beads in chain and junctions Temperature control (coupled to heat bath) Units: (length), (energy), = (m/ ) 1/2 (time) = 2 1/6
6
Hybrid MD / MC simulation (II) Monte Carlo: junctions formed / destroyed with probability: U assoc = -22
7
Simulation details 1000 polymeric chains, 8 beads/chain Box size: (23.5 x 20.5 x 27.9) with periodic boundary conditions in x/y direction Concentration = 0.6 beads / ( in overlap regime ) Radius of gyration:
8
Previous results: unsheared system
9
Micelle transition: T=0.5 Percolation transition T=1.5 Numerical study of associating polymers d 2 dT 2 =0 Order parameter: Number of junctions Baljon et al.; J Chem. Phys. 126, 044907 2007 Temperature # of junctions
10
Topological changes at the gel transition Billen et al. Europhys. Lett. 87 (2009) 68003. T=0.5 Micelle transition Node Link T=1.5 Percolation transition Temperature
11
Fresh Results
12
Simulation under constant shear Fixed wall shear rate: = v/h measure: stress temperature below micelle transition Shear velocity: v h Fixed wall h Moving wall 5% chains grafted to wall
13
Shear stress Stress peak
14
Stress – shear plateau plateau
15
Velocity profile 2 bands = 3.6 x10 -4
16
unshearedlow shear rate band high shear rate band end-to-end distance 2 [ 2 ] 14.6423.422.6 lifetime [k ] 4435 atom concentration [atoms/ 3 ] 0.6170.6210.609 aggregate density [#agg/ 3 ] 0.00860.00790.0089 average aggregate size17.919.617.8 Microstructural differences
17
Size distribution
18
Fixed wall Moving wall = 2.15 x10 -2
19
Topological changes under shear Single bridge Double bridge Link Loop
20
Ratio loops / links / bridges drop # links
21
Distribution of multiple bridges Stronger links
22
Average size of bridged aggregates
23
Probability that a chain is part of a strong (m>6) link stronger links close to moving wall = 2.15 x10 -2
24
MD / MC simulation associating polymers Simulation under shear –Plateau in stress-shear curve –Shear banding observed within plateau –Shear-induced aggregation –Gradual differences between both bands Topological changes under shear –No change in loop/bridge ratio –Fewer but stronger links, especially close to moving wall Conclusions
25
Bead-spring model Temperature control through coupling with heat bath [K. Kremer and G. S. Krest. J. Chem. Phys 1990] 11 Distance U Attraction beads in chain Repulsion all beads
26
Associating polymer Junctions between end groups : FENE + Association energy Dynamics … [A. Baljon et al., J. Chem. Phys., 044907 2007] U bond U nobond U Distance
27
Dynamics of associating polymer (I) Monte Carlo: attempt to form junction Distance U P<1 possible form P=1 form U assoc
28
Dynamics of associating polymer (II) Monte Carlo: attempt to break junction Distance U P=1 break P<1 possible break U assoc
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.