Download presentation
Presentation is loading. Please wait.
Published byLee Garry Evans Modified over 9 years ago
1
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM
2
Content Motivation Solar neutrinos: 8B – upturn? Supernova neutrinos: burst and DSNB (diffuse supernova neutrino background) Experimental challenges and approaches LENA and JUNO Laboratory achievements Pulse shape discrimination L. Oberauer, TUM2
3
Motivation: solar neutrios Big success in the past: discovery of neutrino oscillations...but two questions (perhaps more...) are open Solar metallicity ? CNO neutrino measurement required (Borexino?, SNO+?) MSW effect in 8 B – spectrum ? („missing upturn“) => 8 B – spectrum at low E-threshold and with high statistics L. Oberauer, TUM3
4
Solar MSW effect 4 Where is the up-turn in 8 B ? L. Oberauer, TUM
5
5 A. Friedland et al., Phys.Lett.B594:347,2004 Non-standard P ee transitions 1,2,4: Flavor changing neutral current models 3: Standard MSW curve Impact on P ee in szenarios with sterile neutrino admixtures P. De Holanda, A.Y. Smirnov, Phys.Rev.D83:113011,2011 arxive:1012.5627 110 L. Oberauer, TUM
6
Motivation: supernova neutrinos Flavor and energy determination 2 CC – reactions (on H and 12 C) for anti-electronneutrinos CC – reaction (on 12C) for electronneutrinos NC – reaction (on 12C) for all active neutrinos NC – elastic-scattering off H for all active neutrinos CC/NC – elastic scattering off electronsall active neutrinos L. Oberauer, TUM6
7
Motivation: supernova neutrinos from K. Scholberg, Taup 2011 Energy distribution (“high” E)Energy distribution (“low” E) all flavors from J. Beacom L. Oberauer, TUM7
8
Expected rate: 2-20 e /(50 kt y) (in energy window from 10-25MeV) Detection of DSNB flux Isotropic flux of all SN ‘s emitted in the history of the Universe. Faint signal: ≈ 10 2 /cm 2 s Detection of e by inverse decay: e + p e + + n Remaining background sources reactor and atmospheric e ‘s cosmogenic backgrounds Scientific gain first detection of DSNB information on average SN spectrum _ _ L. Oberauer, TUM8
9
Challenges and approaches Large LSc (> 10 kton), safety requirements, price Lab (solvent) Resolution in energy and space Optical quality: high light-yield, long absorption- and scattering-lengths Radiopurity Solar neutrinos ( 208 Tl) Purification methods ? Functional response Quenching behavior Pulse-shape discrimination L. Oberauer, TUM9
10
Challenges and approaches LENA (Low Energy Neutrino Astronomy) LENA design study (LAGUNA consortium) for Pyhäsalmi (Finland) arxive:1104.5620 L. Oberauer, TUM10
11
Challenges and approaches JUNO (Jiagmen Underground Neutrino Observatory) L. Oberauer, TUM11
12
Laboratory achievements LENA Monte-Carlo simulation on solar 8 B-neutrino detection (electron scattering) after stat. Subtraction (1y, 3 sigma limit) Background considerations: 208 Tl Borexino 2007 value -> tagged via ( )-coincidence 10C cosmogenic bg -> muon veto (T 1/2 = 19.3 s) Conclusion: E-threshold of 2 MeV achievable L. Oberauer, TUM12
13
LENA Monte-Carlo 8 B-neutrinos MSW L. Oberauer, TUM13
14
LENA Monte-Carlo 8 B-neutrinos Conclusion: MSW-test (“search for the up-turn”) and search for new physics is feasible in LENA …even, if intrinsic background is factor 10 2 larger as in Borexino… For details: R. Möllenberg et al., Phys. Lett. B737, 251 (2014), arxiv:1408.0623 L. Oberauer, TUM14
15
JUNO Monte-Carlo 8 B-neutrinos Cosmogenic background is severe 3-fold coincidence technique (Borexino) for 10 C feasible ? 11 Be shape measurement and statistical subtraction possible ? JUNO “yellow book”, arxiv:1507.05613 L. Oberauer, TUM15
16
DSNB L. Oberauer, TUM16 Monte-Carlo for LENA in Pyhäsalmi DSNB events in 50 kton in 10 y: (12 < E/MeV < 21) R. Möllenberg et al., Phys. Rev. D 91 (2015) 3, 032005 – arxiv:1409.2240
17
DSNB - Background L. Oberauer, TUM17 Fast neutron background in LENA high-E neutrons, generated outside the detector by muons Fast neutrons are a forming a considerable background: -Reducing fiducial volume -Pulse shape discrimination fast neutrons
18
DSNB - Background L. Oberauer, TUM18 NC – reactions of atmospheric neutrinos on 12 C Monte-Carlo simulation for LENA in Pyhäsalmi About 40% of the events can be tagged via delayed coincidence - Pulse shape discrimination (PSD) is mandatory (efficiency > 90%)
19
PSD results from TUM L. Oberauer, TUM19 1-1.5 MeV LAB + 3g/l PPO + 20mg/l bisMSB neutron events gamma events t t = 28.5ns Pulsed neutron beam at 11 MeV LAB scintillator exhibits excellent PSD behavior Similar results from B. von Krosigk et al., Eur.Phys.J. C73 (2013) 4, 2390
20
PSD applied for LENA L. Oberauer, TUM20
21
DSNB in LENA L. Oberauer, TUM21 Signal / background ratio possible after PSD cut DSNB feasibility? Depends on background uncertainty. 5% uncertainty = 0.1% PSD uncertainty
22
DSNB in LENA L. Oberauer, TUM22 Together with an improved astrophysical measurement of the SN-rate (green, dashed band shows the current limits) a future DSNB measurement at LENA allows determination of
23
No DSNB in LENA L. Oberauer, TUM23 No DSNB signal in LENA (only background) would significantly (factor 10) improve existing SuperKamiokande limit on DSNB Flux limit (after 10y) would be 0.4 / cm 2 s In this scenario all current DSNB models would be ruled out at 90% CL, a large parameter space would be ruled out at 3 sigma
24
Conclusions L. Oberauer, TUM24 Improved solar 8 B-spectral measurement is feasible with future large LSc detectors -> Probing the MSW-upturn and searching for new physics -> Precondition: radiopurity, cosmogenic bg rejection DSNB measurement feasible with future LSc detectors -> Probing astrophysical SN-models -> Precondition: pulse shape rejection
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.