Download presentation
Presentation is loading. Please wait.
Published byGarry White Modified over 8 years ago
1
Gisela Anton LAUNCH 09 Heidelberg, November 10 th, 2009 High Energy Neutrino Astronomy
2
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 2 Content Introduction to high energy neutrino astronomy Neutrino-Telescopes: IceCube and ANTARES Selected results Future perspectives of IceCube und KM3NeT Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
3
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 3 Messengers of the high energy universe Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009 p p e Cosmic ray spectrum
4
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 4 The high energy universe Gamma-ray Burst (GRB 080319B, X-Ray, SWIFT) Active Galactic Nuclei (artists view) Supernova Remnant (SN1006, optiical, radio, X-ray) Microquasar (artists view) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
5
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 5 Acceleration of particles Shock front (Fermi-acceleration) Objects with strong magnetic fields (pulsars, magnetars) Beam dump (secondary particles) Interaction of high energy particles with photons or matter -Protons: pion production and decay -Electrons: inverse Compton-Scattering of Photons e + γ(low energy) → e + γ (TeV) Production mechanisms p + p(γ) → π ± + X μ + ν μ e + ν μ + ν e p + p(γ) → π 0 + X γ + γ (TeV) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
6
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 6 Photon ↔ neutrino connection: Observed from RX J1713.7–3946: -γ-rays up to several 10 TeV → particle acceleration up to 100 TeV and above Calculated neutrino fluxes: Estimated neutrino fluxes (SNR) RX J1713.7–3946 p + p → π ± + X μ + ν μ e + ν μ + ν e p + p → π 0 + X γ + γ For strong sources: 10 -12 –10 -11 TeV -1 cm -2 s -1 @ 1 TeV AK, Hinton, Stegmann, Aharonian, ApJ (2006) Halzen, AK, O’Murchadha, PRD (2008) Kistler, Beacom, PRD (2006)... AK, Hinton, Stegmann, Aharonian, ApJ (2006) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
7
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 7 Neutrinos as cosmic messengers Neutrinos point back to sources Neutrinos travel cosmological distances Neutrinos escape dense sources Neutrinos are related to hadron acceleration Neutrinos complement high energy proton and gamma observation Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
8
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 8 Detection of Neutrinos muon νμνμ nuclear reaction cascade Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
9
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 9 Background: atmospheric muons and neutrinos p atmosphere cosmic rays μ νμνμ νμνμ cosmic background p μ νμνμ Flux from above dominated by atmospheric muons Neutrino telescopes mainly sensitive to neutrinos from below Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
10
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 10 Sky visibility in neutrinos Horizon above below Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
11
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 11 Neutrino Telescopes: Baikal, IceCube and ANTARES Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
12
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 12 NT200 8 strings (192 optical modules) Instrumented volume 1×10 -4 km 3 Running since 1998 NT200+ NT200 + 3 outer strings (36 optical modules) Instrumented volume 0.004 km 3 Running since 2005 Baikal NT200+ Single storey Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
13
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 13 Sky coverage Visibility ANTARES (Mediterranean Sea) > 75% 2 25% – 75% < 25% TeV γ-Sources galactic extragalactic Visibility IceCube (Southpole) 100% 0% Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
14
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 14 IceCube at the Southpole Southpole IceCube Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
15
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 15 I Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
16
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 16 Optical properties of Ice Photon-Propagation in ice dominated by scattering λ abs ~100 m λ scat ~20 m Event reconstruction sensitive to ice properties Detailed measurement of ice properties (dust layer) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
17
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 17 ANTARES in the Mediterranean Main cable (45km) Shore station Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
18
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 18 12 Lines (885 PMTs) Completion May 2008 Instrumented volume: ~0.01 km 3 ANTARES 2100 m 2475 m Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
19
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 19 Lines moving in the sea current Acoutic positioning system + tiltmeter and compasses: x < 10 cm Monitoring of the positioning with laser pulses Precision ~0.5 ns = 10 cm Position determination for PMTs Laser 0.5 ns 0-2-3-41234 Time measured – calculated (ns) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
20
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 20 Optical Background Optical background due to 40K-decay and bioluminescense Typical rate per PMT 60-100 kHz Additional short bursts and periods with higher rates Mar.’06Sept.’06Mar.’07Sep.’07Mar.’08 Median rate (kHz) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
21
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 21 Selected Results Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
22
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 22 ANTARES: Atmospheric Myons & Neutrinos up going: ν-induced myons ANTARES (173 days) down going: atm. myons Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
23
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 23 Need of calibration source for proof of detector pointing capability and resolution Nature offers deficit of muons from direction of the Moon -Diameter of the Moon 0.5° Angular resolution -IceCube 80-String < 1° -ANTARES < 0.5° First observation of the Moon shadow with IceCube 40-String data IceCube: the shadow of the moon Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009 A. Karle @ ICRC 2009 RA relative to moon position Dec rel. moon
24
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 24 Search for point sources – IceCube 40 strings (6 months) Preliminary Background: atm. neutrinos (6796 events) (10981 events) Background: atm. muons Most-significant spot: all-sky background probability: 61% Significance Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
25
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 25 Point source sensitivities ANTARES: 12 lines 1 year (pred. sensitivity) Flux predictions Halzen, AK, O’Murchadha, PRD (2008) AK, Hinton, Stegmann, Aharonian, ApJ (2006) Kistler, Beacom, PRD (2006) Costantini & Vissani, App (2005)... MACRO (6 years) Super-K. (4.5 years) AMANDA (3.8 years) IceCube: IceCube 40 Strings 330 days (sensitivity) IceCube 80 Strings 1 yr (pred. sensitivity) 90% CL sensitivity for E -2 spectra (preliminary) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
26
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 26 triggered Search Sensitivity gain due to time and direction of burst measured by satellites Low number of events per GRB expected ➞ “Burst-Stacking” Un-triggered Search Possible large population of “choked“ GRBs; unvisible in γ-rays Search for excess of events in time and direction Gamma-Ray Bursts Fireball model Precursor ~-100 sT0T0 ~100 s> 1000 s TeV neutrinos PeV neutrinos EeV neutrinos Prompt Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
27
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 27 Limits on neutrino fluxes from GRBs precursor prompt precursor: Meszaros & Waxman, PRL (2001) prompt: IceCube, AK et al., ICRC2009 Perspectives: 200 – 300 GRBs per year (Fermi, SWIFT) IceCube will be able to detect predicted fluxes within next years Baikal NT200+ (155 GRBs) (Avrorin et al., arXiv:0910.4327) IceCube 22-Strings (41 GRBs) (Abbasi et al, arXiv:0907.2227) AMANDA (417 GRBs) (Achterberg et al. (2008) ApJ 674, 357) predictions IceCube Baikal IceCube Amanda Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
28
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 28 First proposed by M. Kowalski (Kowalski and Mohr (2007), App 27, 533) IceCube: cooperation with ROTSE (4 telescopes) Antares: cooperation with TAROT (2 telescopes) Optical Follow-Up SN/GRB robotic optical telescopes neutrino telescope send alert Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
29
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 29 Neutralino ( χ ) good WIMP candidate Gravitational capture in the Sun + self annihilation Neutrino rate only depends on scattering cross section (equilibrium between capture and annihilation) Dark Matter Searches (WIMPs) χ ν - ν Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
30
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 30 ` IceCube 86 with Deep Core Sensitivity 1 yr (prel., hard) WIMP searches Direct detection experiments (CDMS, COUPP, KIMS) Super-Kamiokande (2004) AMANDA 7 years soft hard IceCube 22-strings limits (PRL 102, 201302 (2009)) soft hard MSSM models } Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
31
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 Expected Neutrino Events from Dark Matter Annihilation in ANTARES Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
32
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 32 Diffuse neutrino flux Baikal Waxman-Bahcall IC22 ICRC2009 IceCube 22 strings (preliminary) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
33
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 33 Further Physics Point Sources: Variable Sources -Extragalactic -source candidates are non persistent -Time search window given for instance by γ-ray signals reduction of background Target of opportunity: 2 neutrinos within t from same direction send alert to optical telescope for follow up Other Topics: Supernovae (MeV neutrinos) Neutrino oszillation (atmospheric neutrinos 10 - 100 GeV) Exotic physics (Lorentz symmetry violation, monopoles,...) Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
34
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 34 Perspectives with IceCube und KM3NeT Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
35
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 35 IceCube: compared to AMANDA (7 years) factor 25 increased sensitivity -larger detector + data quality -accumulated data -improved analysis methods IceCube is in the region of realistic discovery potential, but - flux estimates indicate that IceCube is at the edge of the interesting region - IceCube covers only have of the sky Future of Neutrino-Astronomy Spiering, HGF review, 2009 Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
36
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 36 km 3 -scale neutrino telescope in the Mediterranean ( and infrastructure for marine and Earth science) Common effort of ANTARES, NEMO and NESTOR pilot projects + Institutes from marine science and oceanographic technologies On the Roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) EU financed Design Study (2006-2009) EU financed Preparatory Phase (2008-2012) KM3NeT Artists view Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
37
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 37 Semi-rigid system of horizontal elements (storeys): 20 storeys Each storey supports 6 OMs in groups of 2 Storeys interlinked by tensioning ropes, subsequent storeys orthogonal to each other Power and data cables separated from ropes Flexible tower with horizontal bars 6 m 40 m Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
38
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 38 OM with many small PMTs 31 3-inch PMTs in 17-inch glass sphere (cathode area ~3x10” PMTs) -19 in lower, 12 in upper hemisphere -Suspended by compressible foam core 31 PMT bases (D) (total ~140 mW) Front-end electronics (B,C) Al cooling shield and stem (A) Single penetrator 2mm optical gel (ANTARES-type) A B C C D PMT Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
39
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 39 KM3NeT Point Source Sensitivity (3 years) Aharens et al. Astr. Phys. (2004) – binned method Average value of sensitivity from R. Abbasi et al. Astro-ph (2009) R. Abbasi et al. Astro-ph (2009) scaled – unbinned method Observed Galactic TeV- sources (SNR, unidentified, microquasars) Aharonian et al. Rep. Prog. Phys. (2008), Abdo et al., ApJ 658 L33-L36 (2007) KM3NeT (binned/unb.) IceCube Typical fluxes Estimated costs: ~100 MEuro (+10% man power) Note: Double sensitivity for about double price... Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
40
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 40 Next steps: Prototyping and design decisions organized in Preparatory Phase framework final decisions require site selection expected to be achieved in ~18 months Timeline: KM3NeT Timeline Feb 2006 Mar 2008 Oct 2009 Mar 2012 Construction phase Data taking phase TDRCDR Design Study Preparatory Phase 2011 Design decision 201320152017 Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
41
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 41 Summary High energy neutrinos deliver complementary information to gamma photons and protons ANTARES completed, IceCube 70% installed, KM3NeT in design phase No cosmological high energy neutrinos observed yet IceCube will enter the region with discovery potential KM3NeT will exceed IceCube Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
42
Alexander Kappes, DPG-Frühjahrstagung, München, 12.03.2009 42 Thank you for your attention muon νμνμ nuclear reaction cascade Gisela Anton, LAUNCH 09, Heidelberg, November 10th, 2009
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.