Download presentation
Presentation is loading. Please wait.
Published byMaximillian Horton Modified over 9 years ago
1
Driven Pile Design George Goble
2
Basic LRFD Requirement η k Σ γ ij Q ij ≤ φ g R ng η k – factor for effect of redundancy, ductility and importance γ ij – Load factor for the i th load type in the j th load combination Q ij – The i th load type in the j th load combination φ g – The resistance factor for the a th failure mode R ng - The nominal strength for the a th failure mode
3
Definition of Loads N – Axial loadDC – Structural Dead Load FT – Load transverse to the LL – Vehicular Live Load bridge centerline FL – Load parallel to the IM – Vehicular Dynamic Load bridge centerline MT – Moment about the ML – Moment about the transverse axis longitudinal axis WL – Wind on Live LoadBR – Vehicular Braking WS – Wind Load on Structure Force Note: Two different wind loads are specified – winds greater than 55 miles per hour and winds less than 55 miles per hour. At greater than 55 miles per hour no traffic loads are included
4
Force Effects Load Set 1, Maximum axial effect with overturning effect All units are kips and feet LOAD N FT FL MT ML DC 5564 0 0 0 0 LL 894 0 0 0 3742 WS (>55)-254 182 145 4334 5454 WS (<55)-142 107 66 1961 3226 WL 0 20 -4.2 -125 600 BR 0 24.2 -54.5 -1636 727
5
Force Effects Load Set 2, Maximum overturning effect with axial effect All units are kips and feet LOA N FT FL MT ML DC 5564 0 0 0 0 LL 6620 0 0 12552 WS (>55) -254 182 145 4334 5454 WS (<55) -142 107 66 1961 3226 WL 0 20 -4.2 -125 600 BR 0 17.9 -40.0 -1208 537
6
AASHTO Load Combinations STR I MAX = 1.25 DC + 1.75 (LL + IM + BR) STR I MIN = 0.9 DC + 1.75 (LL + IM + BR) STR III = 0.9 DC + 1.4 WS STR IV = 1.5 DC STR V MAX = 1.25 DC + 1.35 (LL + IM + BR) + 0.4 WS + 1.0 WL STR V MIN = 0.9 DC + 1.35 (LL + IM + BR) + 0.4 WS + 1.0 WL
7
Table 2 Factored Loads LOADN FTFL MT ML z x y Mx My STR I MAX 8520 42 -95 -2863 7821 STR I MIN 6166 31 -71 -2114 22906 STR III 4652 255 2036068 7635 STR IV 83460 0 00 STR V MAX 8105 95 -51 -1549 7924 STR V MIN 5845 87 -32-971 19561
8
Soil Boring
9
TRY 18 inch Square Prestressed Concrete pile Use 7000 psi Concrete Structural Axial Strength –P n = 0.80 [ 0.85f’ c A g –(f pe - 85.5) A g ] –P n = 1360 kips
11
Wave Equation Results D-36-32 Hammer 3 inches plywood !! Capacity 1100 kips Blow Count 10 Blows per inch Maximum Compression Stress 3.6 ksi Allowable Driving Stress –φ(0.85f’ c - f pe ), - φ = 1.0 –For 7.0 ksi Concrete, Allowable Stress = 5.1 ksi
12
Wave Equation Bearing Graph
13
Concrete Stress-Strain Curve
14
Trial No. 1 1100 kips Pile Capacity 16, 18 inch Square Piles 4 x 4 Group FB-Pier Input –Structural Elements and Material Properties –Soil Properties –Structural Geometry –Loads Lateral – O’Neil Sand Model DRIVEN Axial Model –Increase Axial Capacity by a Factor of 2.0 Effective Prestress – 800 psi Linear Analysis – No P-Δ – But Non-Linear Soil
15
Results Several Tries - 4 x 4 Group Doesn’t Work – Pile Top Structural Failure Change to 20 Inch Square Pile – 4 x 4 Group Very Safe Try 3 x 4, 20 Inch Pile Group Successful After Several Trials
16
Final Design
17
Results
18
Bi-Axial Interaction Diagram Pile 4, Load Case 2
19
Critical Conditions Load CaseMax. Pile Load, Pile No. Kips Max. Uplift Load, Pile No. Kips Demand/Capacity Ratio, Pile No. Str I Max847, 90.700 Str I Min79168, 40.654 Str III5611.000, 4 Str IV6910.570 Str V Max7830.673 Str V Min7120.649
20
Required Axial Capacity R n = Un-Factored Capacity/φ R n = 847/0.80 R n = 1060 kips
21
Wave Equation Analysis
22
Final Requirements 12, 20 Inch Square Piles Estimated Length – 85 Feet – (Bottom of Cap, -10 Feet) Required Blow Count – 80 Blows per Foot Maximum Compression Stress – 3.3 ksi Maximum Tension – 1.5 ksi – Excessive, Throttle Back
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.