Presentation is loading. Please wait.

Presentation is loading. Please wait.

Driven Pile Design George Goble. Basic LRFD Requirement η k Σ γ ij Q ij ≤ φ g R ng η k – factor for effect of redundancy, ductility and importance γ ij.

Similar presentations


Presentation on theme: "Driven Pile Design George Goble. Basic LRFD Requirement η k Σ γ ij Q ij ≤ φ g R ng η k – factor for effect of redundancy, ductility and importance γ ij."— Presentation transcript:

1 Driven Pile Design George Goble

2 Basic LRFD Requirement η k Σ γ ij Q ij ≤ φ g R ng η k – factor for effect of redundancy, ductility and importance γ ij – Load factor for the i th load type in the j th load combination Q ij – The i th load type in the j th load combination φ g – The resistance factor for the a th failure mode R ng - The nominal strength for the a th failure mode

3 Definition of Loads N – Axial loadDC – Structural Dead Load FT – Load transverse to the LL – Vehicular Live Load bridge centerline FL – Load parallel to the IM – Vehicular Dynamic Load bridge centerline MT – Moment about the ML – Moment about the transverse axis longitudinal axis WL – Wind on Live LoadBR – Vehicular Braking WS – Wind Load on Structure Force Note: Two different wind loads are specified – winds greater than 55 miles per hour and winds less than 55 miles per hour. At greater than 55 miles per hour no traffic loads are included

4 Force Effects Load Set 1, Maximum axial effect with overturning effect All units are kips and feet LOAD N FT FL MT ML DC 5564 0 0 0 0 LL 894 0 0 0 3742 WS (>55)-254 182 145 4334 5454 WS (<55)-142 107 66 1961 3226 WL 0 20 -4.2 -125 600 BR 0 24.2 -54.5 -1636 727

5 Force Effects Load Set 2, Maximum overturning effect with axial effect All units are kips and feet LOA N FT FL MT ML DC 5564 0 0 0 0 LL 6620 0 0 12552 WS (>55) -254 182 145 4334 5454 WS (<55) -142 107 66 1961 3226 WL 0 20 -4.2 -125 600 BR 0 17.9 -40.0 -1208 537

6 AASHTO Load Combinations STR I MAX = 1.25 DC + 1.75 (LL + IM + BR) STR I MIN = 0.9 DC + 1.75 (LL + IM + BR) STR III = 0.9 DC + 1.4 WS STR IV = 1.5 DC STR V MAX = 1.25 DC + 1.35 (LL + IM + BR) + 0.4 WS + 1.0 WL STR V MIN = 0.9 DC + 1.35 (LL + IM + BR) + 0.4 WS + 1.0 WL

7 Table 2 Factored Loads LOADN FTFL MT ML z x y Mx My STR I MAX 8520 42 -95 -2863 7821 STR I MIN 6166 31 -71 -2114 22906 STR III 4652 255 2036068 7635 STR IV 83460 0 00 STR V MAX 8105 95 -51 -1549 7924 STR V MIN 5845 87 -32-971 19561

8 Soil Boring

9 TRY 18 inch Square Prestressed Concrete pile Use 7000 psi Concrete Structural Axial Strength –P n = 0.80 [ 0.85f’ c A g –(f pe - 85.5) A g ] –P n = 1360 kips

10

11 Wave Equation Results D-36-32 Hammer 3 inches plywood !! Capacity 1100 kips Blow Count 10 Blows per inch Maximum Compression Stress 3.6 ksi Allowable Driving Stress –φ(0.85f’ c - f pe ), - φ = 1.0 –For 7.0 ksi Concrete, Allowable Stress = 5.1 ksi

12 Wave Equation Bearing Graph

13 Concrete Stress-Strain Curve

14 Trial No. 1 1100 kips Pile Capacity 16, 18 inch Square Piles 4 x 4 Group FB-Pier Input –Structural Elements and Material Properties –Soil Properties –Structural Geometry –Loads Lateral – O’Neil Sand Model DRIVEN Axial Model –Increase Axial Capacity by a Factor of 2.0 Effective Prestress – 800 psi Linear Analysis – No P-Δ – But Non-Linear Soil

15 Results Several Tries - 4 x 4 Group Doesn’t Work – Pile Top Structural Failure Change to 20 Inch Square Pile – 4 x 4 Group Very Safe Try 3 x 4, 20 Inch Pile Group Successful After Several Trials

16 Final Design

17 Results

18 Bi-Axial Interaction Diagram Pile 4, Load Case 2

19 Critical Conditions Load CaseMax. Pile Load, Pile No. Kips Max. Uplift Load, Pile No. Kips Demand/Capacity Ratio, Pile No. Str I Max847, 90.700 Str I Min79168, 40.654 Str III5611.000, 4 Str IV6910.570 Str V Max7830.673 Str V Min7120.649

20 Required Axial Capacity R n = Un-Factored Capacity/φ R n = 847/0.80 R n = 1060 kips

21 Wave Equation Analysis

22 Final Requirements 12, 20 Inch Square Piles Estimated Length – 85 Feet – (Bottom of Cap, -10 Feet) Required Blow Count – 80 Blows per Foot Maximum Compression Stress – 3.3 ksi Maximum Tension – 1.5 ksi – Excessive, Throttle Back


Download ppt "Driven Pile Design George Goble. Basic LRFD Requirement η k Σ γ ij Q ij ≤ φ g R ng η k – factor for effect of redundancy, ductility and importance γ ij."

Similar presentations


Ads by Google