Download presentation
Presentation is loading. Please wait.
Published byChrystal Cunningham Modified over 9 years ago
1
Diversification Brian O’Meara EEB464 Fall 2015 http://www.youtube.com/watch?v=b97sBw-sRNM
2
Stork. Insect diversity: facts, fiction, and speculation. Biological Journal of the Linnean Society (1988) vol. 35 pp. 321-337
3
1 species260,000 species Same age, same starting diversity: why the difference? © Scott Zona © autan© zen Sutherland © Greg & Marybeth Dimijlan © Steve Chilton
4
Farrell et al. Escalation of Plant Defense - Do Latex and Resin Canals Spur Plant Diversification. Am. Nat. (1991) vol. 138 (4) pp. 881-900
5
Farrell. "Inordinate fondness" explained: Why are there so many beetles?. Science (1998) vol. 281 (5376) pp. 555-559
7
N(t) = N(0)e bt
8
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 N(t) = N(0)e bt ln(N(t)) = ln(N(0)e bt ) = ln(N(0)) + bt ln(N(0)) b = slope ln(2)
9
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 ln(N(t)) = ln(N(0)) + bt b = slope ln(2)
10
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 ln(N(t)) = ln(2) + bt b = slope ln(2)
11
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 ln(N(t)) = ln(2) + bt b = slope ln(2) ln(N(t))
12
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 ln(N(t)) = ln(2) + bt b = slope ln(2) t
13
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 ln(N(t)) = ln(2) + bt b = slope ln(2)
14
Nee. Birth-death models in macroevolution. Annu Rev Ecol Syst (2006) vol. 37 pp. 1-17 b = ( ln(N(t)) - ln(2) ) ÷ t b = slope ln(2)
15
b = ( ln(N(t)) - ln(2) ) ÷ t Magallón and Sanderson. Absolute diversification rates in angiosperm clades. Evolution (2001)
16
b = ( ln(N(t)) - ln(2) ) ÷ t Magallón and Sanderson. Absolute diversification rates in angiosperm clades. Evolution (2001)
17
b = ( ln(N(t)) - ln(2) ) ÷ t Magallón and Sanderson. Absolute diversification rates in angiosperm clades. Evolution (2001)
18
High diversification Low diversification
19
Nee et al. Extinction Rates can be Estimated from Molecular Phylogenies. Philosophical Transactions: Biological Sciences (1994) vol. 344 (1307) pp. 77-82
20
Actual Reconstructed
21
b=0.1, d=0 b=1.0, d=0.9
23
Gavrilets and Losos. Adaptive Radiation: Contrasting Theory with Data. Science (2009) vol. 323 (5915) pp. 732-737
25
Yoder et al. Ecological opportunity and the origin of adaptive radiations. Journal of Evolutionary Biology (2010) vol. 23 (8) pp. 1581-1596
26
Sanderson and Donoghue. Shifts in diversification rate with the origin of angiosperms. Science (1994)
27
Seehausen. African cichlid fish: a model system in adaptive radiation research. P R Soc B (2006) vol. 273 (1597) pp. 1987-1998
28
Crisp and Cook. EXPLOSIVE RADIATION OR CRYPTIC MASS EXTINCTION ? INTERPRETING SIGNATURES IN MOLECULAR PHYLOGENIES. Evolution (2009) vol. 63 (9) pp. 2257-2265
29
McKenna and Farrell. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proceedings of the National … (2006)
30
Rabosky and Lovette. Density-dependent diversification in North American wood warblers. Proceedings of the Royal Society of London (2008)
32
Ree. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution (2005) vol. 59 (2) pp. 257-265
34
Alfaro et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. P Natl Acad Sci Usa (2009) vol. 106 (32) pp. 13410-13414
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.