Presentation is loading. Please wait.

Presentation is loading. Please wait.

5-minute Check.

Similar presentations


Presentation on theme: "5-minute Check."— Presentation transcript:

1 5-minute Check

2 8-4 Rhombuses, Rectangles and Squares
Students will analyze & identify Rhombusses, Rectangles & Squares by their properties. Why? So you can solve carpentry problems, as seen in EX 4. Mastery is 80% or better on 5-minute checks and practice problems.

3 Properties of Special Parallelograms – Skill Development
In this lesson, you will study three special types of parallelograms: rhombuses, rectangles and squares. A rectangle is a parallelogram with four right angles. A rhombus is a parallelogram with four congruent sides A square is a parallelogram with four congruent sides and four right angles.

4 Venn Diagram shows relationships-- MEMORIZE
Each shape has the properties of every group that it belongs to. For instance, a square is a rectangle, a rhombus and a parallelogram; so it has all of the properties of those shapes. Properties of specific parallelograms rhombuses rectangles squares

5 Ex. 1: Describing a special parallelogram
Decide whether the statement is always, sometimes, or never true. A rhombus is a rectangle. b. A parallelogram is a rectangle. parallelograms rhombuses rectangles squares

6 Ex. 1: Describing a special parallelogram
Decide whether the statement is always, sometimes, or never true. A rhombus is a rectangle. The statement is sometimes true. In the Venn diagram, the regions for rhombuses and rectangles overlap. IF the rhombus is a square, it is a rectangle. parallelograms rhombuses rectangles squares

7 Ex. 1: Describing a special parallelogram
Decide whether the statement is always, sometimes, or never true. A parallelogram is a rectangle. The statement is sometimes true. Some parallelograms are rectangles. In the Venn diagram, you can see that some of the shapes in the parallelogram box are in the area for rectangles, but many aren’t. parallelograms rhombuses rectangles squares

8 Theorems to Know 8.11 A parallelogram is a rhombus if and only if its diagonals are perpendicular. 8.12 A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles. 8.13 A parallelogram is a rectangle if and only if its diagonals are congruent.

9 Ex. 2: Using properties of special parallelograms
ABCD is a rectangle. What else do you know about ABCD? Because ABCD is a rectangle, it has four right angles by definition. The definition also states that rectangles are parallelograms, so ABCD has all the properties of a parallelogram: Opposite sides are parallel and congruent. Opposite angles are congruent and consecutive angles are supplementary. Diagonals bisect each other.

10 EXAMPLE 1 Use properties of special quadrilaterals For any rhombus QRST, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning. a. Q S SOLUTION a. By definition, a rhombus is a parallelogram with four congruent sides. By Theorem 8.4, opposite angles of a parallelogram are congruent. So, The statement is always true. Q S

11 Take note: A rectangle is defined as a parallelogram with four right angles. But any quadrilateral with four right angles is a rectangle because any quadrilateral with four right angles is a parallelogram. Corollaries about special quadrilaterals: Rhombus Corollary: A quadrilateral is a rhombus if and only if it has four congruent sides. Rectangle Corollary: A quadrilateral is a rectangle if and only if it has four right angles. Square Corollary: A quadrilateral is a square if and only if it is a rhombus and a rectangle. You can use these to prove that a quadrilateral is a rhombus, rectangle or square without proving first that the quadrilateral is a parallelogram.

12 Ex. 3: Using properties of a Rhombus Think….Ink…Share
In the diagram at the right, PQRS is a rhombus. What is the value of y? All four sides of a rhombus are ≅, so RS = PS. 5y – 6 = 2y + 3 Equate lengths of ≅ sides. 5y = 2y + 9 Add 6 to each side. 3y = 9 Subtract 2y from each side. y = 3 Divide each side by 3.

13 EXAMPLE 1 Use properties of special quadrilaterals For any rhombus QRST, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning. Q R b. SOLUTION If rhombus QRST is a square, then all four angles are congruent right angles. So, if QRST is a square. Because not all rhombuses are also squares, the statement is sometimes true. Q R

14 EXAMPLE 2 Classify special quadrilaterals Classify the special quadrilateral. Explain your reasoning. SOLUTION The quadrilateral has four congruent sides. One of the angles is not a right angle, so the rhombus is not also a square. By the Rhombus Corollary, the quadrilateral is a rhombus.

15 GUIDED PRACTICE for Examples 1 and 2 2. A quadrilateral has four congruent sides and four congruent angles. Sketch the quadrilateral and classify it. ANSWER square

16 Using diagonals of special parallelograms
The following theorems are about diagonals of rhombuses and rectangles. Theorem 8.11: A parallelogram is a rhombus if and only if its diagonals are perpendicular. ABCD is a rhombus if and only if AC BD.

17 EXAMPLE 3 List properties of special parallelograms Sketch rectangle ABCD. List everything that you know about it. SOLUTION By definition, you need to draw a figure with the following properties: • The figure is a parallelogram. • The figure has four right angles. Because ABCD is a parallelogram, it also has these properties:

18 EXAMPLE 3 List properties of special parallelograms • Opposite sides are parallel and congruent. • Opposite angles are congruent. Consecutive angles are supplementary. • Diagonals bisect each other. By Theorem 8.13, the diagonals of ABCD are congruent.

19 Using diagonals of special parallelograms
Theorem 8.12: A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles. ABCD is a rhombus if and only if AC bisects DAB and BCD and BD bisects ADC and CBA.

20 EXAMPLE 4 Solve a real-world problem You are building a frame for a window. The window will be installed in the opening shown in the diagram. Carpentry a. The opening must be a rectangle. Given the measurements in the diagram, can you assume that it is? Explain. b. You measure the diagonals of the opening. The diagonals are 54.8 inches and 55.3 inches. What can you conclude about the shape of the opening?

21 EXAMPLE 4 Solve a real-world problem SOLUTION No, you cannot. The boards on opposite sides are the same length, so they form a parallelogram. But you do not know whether the angles are right angles. a. b. By Theorem 8.13, the diagonals of a rectangle are congruent. The diagonals of the quadrilateral formed by the boards are not congruent, so the boards do not form a rectangle.

22 GUIDED PRACTICE for Example 4 4. Suppose you measure only the diagonals of a window opening. If the diagonals have the same measure, can you conclude that the opening is a rectangle? Explain. ANSWER yes, Theorem 8.13

23 Using diagonals of special parallelograms
B Theorem 8.13: A parallelogram is a rectangle if and only if its diagonals are congruent. ABCD is a rectangle if and only if AC ≅ BD. D C

24 NOTE: You can rewrite Theorem 8.11 as a conditional statement and its converse. Conditional statement: If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. Converse: If a parallelogram is a rhombus, then its diagonals are perpendicular.

25 Ex. 4: Proving Theorem 6.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given

26 Ex. 4: Proving Theorem 8.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given

27 Ex. 4: Proving Theorem 8.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given Def. of . Diagonals bisect each other.

28 Ex. 4: Proving Theorem 8.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given Def. of . Diagonals bisect each other.

29 Ex. 4: Proving Theorem 8.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given Def. of . Diagonals bisect each other. SSS congruence post.

30 Ex. 4: Proving Theorem 8.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given Def. of . Diagonals bisect each other. SSS congruence post. CPCTC

31 Ex. 4: Proving Theorem 8.11 Given: ABCD is a rhombus Prove: AC  BD
Statements: ABCD is a rhombus AB ≅ CB AX ≅ CX BX ≅ DX ∆AXB ≅ ∆CXB AXB ≅ CXB AC  BD Reasons: Given Def. of . Diagonals bisect each other. SSS congruence post. CPCTC Congruent Adjacent s

32 Ex 6: Checking a rectangle Think…Ink…Share
4 feet CARPENTRY. You are building a rectangular frame for a theater set. First, you nail four pieces of wood together as shown at the right. What is the shape of the frame? To make sure the frame is a rectangle, you measure the diagonals. One is 7 feet 4 inches. The other is 7 feet 2 inches. Is the frame a rectangle? Explain. 6 feet 6 feet 4 feet

33 Ex 6: Checking a rectangle
4 feet First, you nail four pieces of wood together as shown at the right. What is the shape of the frame? Opposite sides are congruent, so the frame is a parallelogram. 6 feet 6 feet 4 feet

34 Ex 6: Checking a rectangle
4 feet To make sure the frame is a rectangle, you measure the diagonals. One is 7 feet 4 inches. The other is 7 feet 2 inches. Is the frame a rectangle? Explain. The parallelogram is NOT a rectangle. If it were a rectangle, the diagonals would be congruent. 6 feet 6 feet 4 feet

35 What Was the Objective(s) for today?
Students will analyze & identify Rhombusses, Rectangles & Squares. Why? So you can solve carpentry problems, as seen in EX 4. Mastery is 80% or better on 5-minute checks and practice problems.

36 Homework Page # 2-48 even & 52 & 53


Download ppt "5-minute Check."

Similar presentations


Ads by Google