Download presentation
Presentation is loading. Please wait.
Published byJerome Shelton Modified over 9 years ago
1
Constructing the Antiderivative Solving (Simple) Differential Equations The Fundamental Theorem of Calculus (Part 2) Chapter 6: Calculus~ Hughes- Hallett
2
Review: The Definite Integral Physically - is a summing up Geometrically - is an area under a curve Algebraically - is the limit of the sum of the rectangles as the number increases to infinity and the widths decrease to zero:
3
Review of The Fundamental Theorem of Calculus (Part 1) If f is continuous on the interval [a,b] and f(t) = F’(t), then: In words: the definite integral of a rate of change gives the total change.
4
Differential and Integral Formulas
5
Properties of Antiderivative: 1. [f(x) g(x)]dx = f(x)dx g(x)dx (The antiderivative of a sum is the sum of the antiderivatives.) 2. cf(x)dx = cf(x)dx (The antiderivative of a constant times a function is the constant times the antiderivative of the function.)
6
The Definition of Differentials (given y = f(x)) 1. The Independent Differential dx: If x is the independent variable, then the change in x, x is dx; i.e. x = dx. 2. The Dependent Differential dy: If y is the dependent variable then: i.) dy = f ‘(x) dx, if dx 0 (dy is the derivative of the function times dx.) ii.) dy = 0, if dx = 0.
7
Using the differential with the antiderivative.
8
Solving First Order Ordinary Linear Differential Equations To solve a differential equation of the form dy/dx = f(x) write the equation in differential form: dy = f(x) dx and integrate: dy = f(x)dx y = F(x) + C, given F’(x) = f(x) If initial conditions are given y(x 1 ) = y 1 substitute the values into the function and solve for c: y = F(x) + C y 1 = F(x 1 ) + C C = y 1 - F(x 1 )
9
Example: Solve, dr/dp = 3 sin p with r(0)= 6, i.e. r= 6 when p = 0 Solution:
10
The Fundamental Theorem of Calculus (Part 2) If f is a continuous function on an interval, & if a is any number in that interval, then the function F, defined by F(x) = a x f(t)dt is an antiderivative of f, and equivalently:
11
Example:
12
That’s allFolks! Have a good Summer! God Bless
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.