Download presentation
Presentation is loading. Please wait.
Published bySamuel Matthews Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §5.3 Fundamental Theorem of Calc
2
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §5.2 → AntiDerivatives by Substitution Any QUESTIONS About HomeWork §5.22 → HW-23 5.2
3
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 3 Bruce Mayer, PE Chabot College Mathematics §5.3 Learning Goals Show how area under a curve can be expressed as the limit of a sum Define the definite integral and explore its properties State the fundamental theorem of calculus, and use it to compute definite integrals Use the fundamental theorem to solve applied problems involving net change Provide a geometric justification of the fundamental theorem
4
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 4 Bruce Mayer, PE Chabot College Mathematics Area Under the Curve (AUC) The AUC has many Applications in Business, Science, and Engineering Calculation of Geographic Areas River Channel Cross Section Wind-Force Loading
5
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 5 Bruce Mayer, PE Chabot College Mathematics Area Under Function Graph For a Continuous Function, approximate the area between the Curve and the x-Axis by Summing Vertical Strips Use Rectangles of Equal Width –Three Possible Forms Left end pointsRight end pointsMidpoints Strip Width (n strips)
6
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 6 Bruce Mayer, PE Chabot College Mathematics Example: Strip Sum Approximate the area under the graph of Use n = 4 (4 strips) Strip MidPoints
7
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 7 Bruce Mayer, PE Chabot College Mathematics Example: Strip Sum GamePlan
8
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 8 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % XY_Area_fcn_Graph_6x6_BlueGreen_BkGnd_Template_1306.m % % The FUNCTION xmin = 0; xmax = 2; ymin = 0; ymax = 8; % The FUNCTION x = linspace(xmin,xmax,20); y = 2*x.^2; % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green % Now make AREA Plot area(x,y, 'FaceColor', [1.8 1], 'LineWidth', 3), axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 2x^2'),... title(['\fontsize{16}MTH15 Area by Strip Addition',]),... annotation('textbox',[.13.82.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 24JUul13','FontSize',7) hold on set(gca,'Layer','top') plot(x,y, 'LineWidth', 3),
9
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 9 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % % The Limits xmin = 0; xmax = 2; ymin = 0; ymax = 8; % The FUNCTION x = linspace(xmin,xmax,500); y = 2*x.^2; x1 = [0.25:.5:1.75]; y1 = 2*x1.^2 % % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 2x^2'),... title(['\fontsize{16}MTH15 Area by Strip Addition',]),... annotation('textbox',[.13.82.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer 24Jul13','FontSize',7) hold on area([(x1(1)-.25)*ones(1,100),(x1(1)+.25)*ones(1,100)],[y1(1)*ones(1,100),y1(1)*ones(1,100)],'FaceColor',[1.8 1]) area([(x1(2)-.25)*ones(1,100),(x1(2)+.25)*ones(1,100)],[y1(2)*ones(1,100),y1(2)*ones(1,100)],'FaceColor',[1.8 1]) area([(x1(3)-.25)*ones(1,100),(x1(3)+.25)*ones(1,100)],[y1(3)*ones(1,100),y1(3)*ones(1,100)],'FaceColor',[1.8 1]) area([(x1(4)-.25)*ones(1,100),(x1(4)+.25)*ones(1,100)],[y1(4)*ones(1,100),y1(4)*ones(1,100)],'FaceColor',[1.8 1]) plot(x,y, 'LineWidth', 4) set(gca,'Layer','top') plot(x1,y1,'g d', 'LineWidth', 4) plot([x1(1)-.25,x1(1)+.25],[y1(1),y1(1)], 'm', [x1(2)-.25,x1(2)+.25],[y1(2),y1(2)], 'm',... [x1(3)-.25,x1(3)+.25],[y1(3),y1(3)], 'm', [x1(4)-.25,x1(4)+.25],[y1(4),y1(4)], 'm','LineWidth',2) plot([x1(1)-.25,x1(1)-.25],[0,y1(1)], 'm',[x1(2)-.25,x1(2)-.25],[0,y1(2)], 'm',... [x1(3)-.25,x1(3)-.25],[0,y1(3)], 'm', [x1(4)-.25,x1(4)-.25],[0,y1(4)], 'm', 'LineWidth', 2) set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:1:ymax])
10
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 10 Bruce Mayer, PE Chabot College Mathematics Example: Strip Sum The Algebra midpoints
11
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 11 Bruce Mayer, PE Chabot College Mathematics Area under a Curve GOAL: find the exact area under the graph of a function; i.e., the curve PLAN: Use an infinite number of strips of equal width and compute their area with a limit. a b Width: (n strips)
12
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 12 Bruce Mayer, PE Chabot College Mathematics Area Under a Curve Function, f(x), on interval [a,b] is: Continuous NonNegative Then the Area Under the Curve, A The x 1, x 2, …, x n-1,x n are arbitrary, n SubIntervals each with width (b − a)/n a b
13
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 13 Bruce Mayer, PE Chabot College Mathematics Riemann Sum ∑f(x k )·∆x For a Continuous, NonNeg fcn over [a,b] divided into n-intervals of Equal Width, ∆x = (b−a)/n, The AUC can be approximated by the sum the area of Vertical Strips Riemann ∑
14
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 14 Bruce Mayer, PE Chabot College Mathematics Riemann ∑ → Definite Integral For a Continuous, NonNeg fcn over [a,b] divided into n-intervals of Equal Width, ∆x = (b−a)/n, The AUC can be calculated EXACTLY by the Riemann sum as the number of strips becomes infinite. This Process of finding an Infinite Sum is called “Integration”; "to render (something) whole," from Latin integratus, past participle of integrare "make whole,"
15
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 15 Bruce Mayer, PE Chabot College Mathematics Riemann ∑ → Definite Integral As the No. of Strips increase the AUC Calculation becomes more accurate The Riemann-Sum to Definite-Integral Twenty StripsFifty Strips
16
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 16 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % % The Limits xmin = 0; xmax = 2; ymin = 0; ymax = 8; % The FUNCTION x = linspace(xmin,xmax,500); y = 2*x.^2; x1 = [1/20:1/10:39/20]; y1 = 2*x1.^2; % The ZERO Lines zxh = [xmin xmax]; zyh = [0 0]; zxv = [0 0]; zyv = [ymin ymax]; % % the 6x6 Plot axes; set(gca,'FontSize',12); whitebg([0.8 1 1]); % Chg Plot BackGround to Blue-Green plot(x,y, 'LineWidth', 4),axis([xmin xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x) = 2x^2'),... title(['\fontsize{16}MTH15 Area by Strip Addition',]),... annotation('textbox',[.13.82.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer 24Jul13','FontSize',7) hold on bar(x1,y1, 'BarWidth',1, 'FaceColor', [1.8 1], 'EdgeColor','b', 'LineWidth', 2) set(gca,'XTick',[xmin:0.5:xmax]); set(gca,'YTick',[ymin:1:ymax]) set(gca,'Layer','top') plot(x,y, 'LineWidth', 3)
17
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 17 Bruce Mayer, PE Chabot College Mathematics Integration Symbol lower limit of integration upper limit of integration integrand variable of integration (dummy variable) It is called a dummy variable because the answer does not depend on the symbol chosen; it depends only on a&b Definite Integral Symbology
18
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 18 Bruce Mayer, PE Chabot College Mathematics Recall Fundamental Theorem The fundamental theorem* of calculus is a theorem that links the concept of the derivative of a function with the concept of the integral. Part-1: Definite Integral (Area Under Curve) Part-2: AntiDerivative * The Proof is Beyond the Scope of MTH15
19
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 19 Bruce Mayer, PE Chabot College Mathematics Fundamental Theorem – Part2 Previously we stated that the AntiDerivative of f(x) is F(x), so then Now consider the definite Integral (AUC) Relationship to the AntiDerivative
20
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 20 Bruce Mayer, PE Chabot College Mathematics DefiniteIntegral↔AntiDerivative That is, The AUC for a continuous Function, f(x), spanning domain [a,b] is the AntiDerivative evaluated at b minus the AntiDerivative evaluated at a. –D. F. Riddle, Calculus and Analytical Geometry, Belmont, CA, Wadsworth, 1974, pp. 179-181, pg. 770
21
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 21 Bruce Mayer, PE Chabot College Mathematics Example Find AUC Find the area under the graph of y = 2x 3 Then Gives the area since 2x 3 is nonnegative on [0, 2]. AntiderivativeFund. Thm. of Calculus
22
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 22 Bruce Mayer, PE Chabot College Mathematics Rules for Definite Integrals 1.Constant Rule: for any constant, k 2.Sum/Diff Rule: 3.Zero Width Rule 4.Domain Reversal Rule
23
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 23 Bruce Mayer, PE Chabot College Mathematics Rules for Definite Integrals 5.SubDivision Rule, for (a<b<c)
24
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 24 Bruce Mayer, PE Chabot College Mathematics Example Eval Definite Integral Find a Value for The Reduction using the Term-by-Term rule
25
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 25 Bruce Mayer, PE Chabot College Mathematics Example Def Int by Substitution Find: Let: Then find dx(du) and u(x=0), and u(x=1) Clarify Limits
26
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 26 Bruce Mayer, PE Chabot College Mathematics Example Def Int by Substitution SubOut x 2 +3x, and the Limits Dividing out the 2x+3 Then Thus Ans x
27
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 27 Bruce Mayer, PE Chabot College Mathematics The Average Value of a Function At y = y avg there at EQUAL AREAS above & below the Avg-Line Avg Line
28
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 28 Bruce Mayer, PE Chabot College Mathematics MATLAB Code MATLAB Code % Bruce Mayer, PE % MTH-15 24Jul13 % Area_Between_fcn_Graph_BlueGreen_BkGnd_Template_1306.m % Ref: E. B. Magrab, S. Azarm, B. Balachandran, J. H. Duncan, K. E. % Herhold, G. C. Gregory, "An Engineer's Guide to MATLAB", ISBN % 978-0-13-199110-1, Pearson Higher Ed, 2011, pp294-295 % clc; clear % The Function xmin = 0; xmax = 16; ymin = 0; ymax = 350; xct = 1000 x = linspace(xmin,xmax,xct); y1 =.5*x.^3-9*x.^2+11*x+330; yavg = mean(y1) y2 = yavg*ones(1,xct) % % % Find Zeros plot(x,y1, x,y2, 'k','LineWidth', 2), axis([0 xmax ymin ymax]),... grid, xlabel('\fontsize{14}x'), ylabel('\fontsize{14}y = f(x)'),... title(['\fontsize{16}MTH15 Meaning of Avg',]),... annotation('textbox',[.13.05.0.1], 'FitBoxToText', 'on', 'EdgeColor', 'none', 'String', 'Bruce Mayer, PE 24Jul13','FontSize',7) display('Showing 2Fcn Plot; hit ANY KEY to Continue') % "hold" = Retain current graph when adding new graphs hold on % nct = 500 xn = linspace(xmin, xmax, nct); fill([xn,fliplr(xn)],[.5*xn.^3-9*xn.^2+11*xn+330, fliplr(yavg*ones(1,nct))],'m'),grid plot(x,y1), grid
29
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 29 Bruce Mayer, PE Chabot College Mathematics The Average Value of a Function Mathematically - If f is integrable on [a, b], then the average value of f over [a, b] is Example Find the Avg Value: Use Average Definition:
30
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 30 Bruce Mayer, PE Chabot College Mathematics Net Change If the Rate of Change (RoC), dQ/dx = Q’(x) is continuous over the interval [a,b], then the NET CHANGE in Q(x) is Given by
31
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 31 Bruce Mayer, PE Chabot College Mathematics Example Find Net Change A small importer of Gladiator merchandise has modeled her monthly profits since the company was created on January 1, 1997 by the formula Where –P ≡ $-Profit in 100’s of Dollars ($c or c-Notes) –t ≡ year of operation for the company
32
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 32 Bruce Mayer, PE Chabot College Mathematics Example Find Net Change What is the importer’s net change in profit between the beginning of the years 2000 and 2003? SOLUTION: Recall t is in years after 1997, Thus Year 2000 corresponds to t = 3 Year 2003 corresponds to t = 6 Then in this case the Net Change in Profit over [3,6] →
33
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 33 Bruce Mayer, PE Chabot College Mathematics Example Find Net Change Thus Her monthly profits increased by about $1,354.50 between 2000 & 2003
34
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 34 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §5.3 P74 → Water Consumption P80 → Distance Traveled
35
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 35 Bruce Mayer, PE Chabot College Mathematics All Done for Today Students Should Calc
36
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 36 Bruce Mayer, PE Chabot College Mathematics All Done for Today Fundamental Theorem Part-1
37
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 37 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
38
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 38 Bruce Mayer, PE Chabot College Mathematics Let area under the curve from a to x. (“ a ” is a constant) Then: Fundamental Theorem Proof
39
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 39 Bruce Mayer, PE Chabot College Mathematics min f max f The area of a rectangle drawn under the curve would be less than the actual area under the curve. The area of a rectangle drawn above the curve would be more than the actual area under the curve. h
40
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 40 Bruce Mayer, PE Chabot College Mathematics As h gets smaller, min f and max f get closer together. This is the definition of derivative! Take the anti-derivative of both sides to find an explicit formula for area. initial value
41
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 41 Bruce Mayer, PE Chabot College Mathematics As h gets smaller, min f and max f get closer together. Area under curve from a to x = antiderivative at x minus antiderivative at a.
42
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 42 Bruce Mayer, PE Chabot College Mathematics ConCavity Sign Chart abc −−−−−−++++++−−−−−−++++++ x ConCavity Form d 2 f/dx 2 Sign Critical (Break) Points InflectionNO Inflection Inflection
43
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 43 Bruce Mayer, PE Chabot College Mathematics
44
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 44 Bruce Mayer, PE Chabot College Mathematics
45
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 45 Bruce Mayer, PE Chabot College Mathematics
46
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 46 Bruce Mayer, PE Chabot College Mathematics
47
BMayer@ChabotCollege.edu MTH15_Lec-24_sec_5-3_Fundamental_Theorem.pptx 47 Bruce Mayer, PE Chabot College Mathematics
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.