Download presentation
Presentation is loading. Please wait.
Published byEugene Greer Modified over 9 years ago
1
Investigations of Membrane Polypeptides by Solid-state NMR Spectroscopy: Structure, Dynamics, Aggregation and Topology of Supramolecular Complexes Burkhard Bechinger Université Louis Pasteur, CNRS - UMR Chimie-physique moléculaire et spectroscopie Strasbourg, France
2
NMR to study membrane proteins Solution NMR Requires fast and isotropic motional averaging < 120 kDa (TROSY) Solid-state NMR frozen, dry liquid crystalline membranes no physial size limitation Structure, orientation and dynamics
3
NMR to study membrane proteins Solution NMR Requires fast and isotropic motional averaging < 120 kDa (TROSY) Extended liquid crystalline bilayers are too big Solid-state NMR frozen, dry liquid crystalline membranes no physical size limitation Structure, orientation and dynamics
4
Solid-state NMR provides information on … chemical environment distances dihedral angles orientations in space Structure, dynamics and topology
5
Oriented membranes BoBo
6
Chemical synthesis of peptides allows labelling at single sites
7
Oriented Samples: Structure and Topology
8
15 N chemical shift alignment of the peptide bond
9
Solution and solid-state NMR on the same scale
10
The 2 H quadrupolar splitting 2 H 3 -alanine CC CC 2H2H 2H2H 2H2H Q ~ 3 cos 2 -1 BoBo Similar principles apply for many NMR interactions
11
Detailed helix alignment from combined 15 N and 2 H measurements 2 angles 2 measurables
12
Unique solution from Energy Minimization + + + + + + Tilt 95 o, pitch 173 o hydrophobic hydrophilic
13
KL14 Model Peptide in Oriented Phosphatidylcholine Bilayers Lipid 2 H (kHz) 15 N (ppm) POPC 6.074 DMPC 7.673 PC20:1 8.373 DOPC 10.874 Difference 2 o
14
Dynamics: Rotational Diffusion and Aggregation
15
Liquid crystalline membranes Motion around the membrane normal
16
Rotational averaging: Effect on 15 N powder pattern line shape Static Rotation around 33 (helix long axis) Rotation around 22 Powder pattern provide orientational information
17
2 H solid-state NMR 2 H 3 -alanyl
18
Freezing Rotational Diffusion TM helix IP helix Loss of intensity during transition
19
Equilibrium: Mono- / oligomer 2 H-NMR
20
2 H NMR of ‘‘real‘‘ samples e.g. viral channel peptides Influenza M2 Vpu
21
2 H spectral line shape and mosaic spread Tilt angle: 10 o 40 o 50 o 70 0 Mosaic Spread 0.5 1 3 5 10 15
22
Model amphipathic helix = 45.3 o or 65.5 o Mosaic spread = 1 o
23
Example: Controlling Topology
24
Oriented 15 N solid-state NMR: LAH4 pH-dependent molecular switch
25
Example: Domain of ICP47 Herpes simplex virus 87 residues early gene product (domain 2-34 active) Inhibits transport by TAP of antigenic peptides to surface and thus presentation by MHC I lack of immunogenic response Solution NMR: Helix (5-14)-loop-helix (22-31) in SDS micelles c/o Robert Tampé - Frankfurt
26
15 N solid-state NMR of ICP47(2-34) in oriented POPC Helix1 Loop Helix2 ‚Modelling‘ tilt 84 o tilt 75 o
27
2 H solid-state NMR of ICP47(2-34) in oriented POPC Mosaic spread 10-15 o
28
Model for membrane-bound ICP47
29
Acknowledgements Christopher Aisenbrey Christina Sizun Bas Vogt Jesus Raya Gérard Nullans, ULP-INSERM Neurochimie Robert Tampé, Universität Frankfurt €ARC, ANRS, Vaincre la Mucoviscidose Region Alsace CNRS, Ministère, ACI Jeune Equipe
31
Methods to orient lipid bilayers Combine MAS and oriented samples
32
MAOSS at 10 kHz 31 P NMR of oriented bilayers 10 kHz 565 Hz simulated
33
MAS side band analysis provides orientational information
34
MAOSS of hydrophobic model peptide in phospholipid bilayer 3.7 o mosaic 20 % powder 15 N NMR 31 P NMR =10 o =25 o
35
Summary MAOSS with new sample set up low or fast spinning spinning side band analysis tilt, mosaic spread and powder pattern contributions
36
Model for membrane-bound ICP47
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.