Download presentation
Presentation is loading. Please wait.
Published byKathlyn Parrish Modified over 9 years ago
1
Lab Meeting September 2001 John Wrobel
2
Outline Tour of HIV-1 RT DNA polymerization reaction pol “THE MOVIE” Role of AA residues in HIV-1 RT database
3
HIV-1 Reverse Transcriptase p51 p66 heterodimer
4
HIV-1 RT with DNA template p66 p51
5
HIV-1 RT with DNA template p66 p51
6
66 kd subunit fingers palm connection RNaseH thumb
7
HIV-1 RT subunits (primary sequence) p66 fingers thumbpalm connectionRNaseH fingers thumbpalm connection p51 185 120151243 323438 560
8
Conserved Sequence Motifs Figure from CSH Symposia on Quant. Biol., Vol 53, pp 495-504 (1993) Based on Protein Engineering 3, 461-467 (1990)
9
Catalytic Site (aspartic acid triad) D110 D185 D186
10
p66 with DNA template
11
Active Site for Polymerization D185 D110 D186 EE FF 99 10 66 Aspartic Acid Triad
12
Fingers – Secondary structure ElementSheetResidues 44 S2W71 – D76 4 – B F77 BB R78 – T84 C – D L120 – D123 DD F124 – Y127 77 S1T128 – P133 7 – 8 S134 – T139 88 S1P140 – Y146 8 – E N147 – P150 ElementSheetResidues P1 – G18 11 P19 – Q23 1 - A W24 – L26 AA T27 – E44 A – 2 G45 – K46 22 S1I47 – G51 2 – 3 P52 – Y56 33 S2N57 – I63 3 – 4 K64 – K70 2 -sheets: S1, S2 3 -helices: A, B, D 3 projecting loops: 21-45, 58-77, 130-144
13
-helices A, B, D Rasmol Fingers BB AA DD
14
-sheet 1 Rasmol Fingers
15
-sheet 2 Rasmol Fingers
16
Rasmol S2 S1 AA DD BB
17
NRTI residues in 3- 4 44 33 Rasmol
18
NRTI residues in 3- 4 44 33 Rasmol K65 D67 T69 K70 L74 V75
19
2 loops involved in function 3- 4 2- 3 (p66) (p51)
20
Rotation of Fingers Structure 7, R31-R35 (1999) 3- 4 loop bends 20° Thick line = unliganded (open conformation) Thin line = complexed with DNA (closed conformation)
21
Region critical for protein stability in fingers subdomain of HIV-1 RT p51 p66
22
Region critical for protein stability in fingers subdomain of HIV-1 RT 77 88 loop
23
Region critical for protein stability in fingers subdomain of HIV-1 RT 77 88 33 22
24
Critical protein stability residue R143 77 88 R143
25
Critical protein stability residue R143 R143
26
Hydophilic Interactions R143 N57 T131 Kinemage
27
Hydrophobic residues critical for protein stability I132 Y144 Y146 F130
28
Big Picture Kinemage
29
Region critical for protein stability in fingers subdomain of HIV-1 RT p66 p51
30
Fingers Residues 1-84 Residues 120-150 Rasmol
31
Fig. 6-37 Voet Hypothetical Folding Pathway Denatured (unfolded protein) Folding Intermediates Native (folded state)
32
Fingers Residues 1-84 Residues 120-150 Rasmol
33
Palm – Secondary structure ElementSheetResidues 10 S3D186 – S191 10 – F D192 – E194 FF I195 – W212 F – 11 G213 11 S3L214 – D218 11 – 12 K219 – P225 12 S4P226 – M230 12 – 13 G231 13 S4Y232 – H235 13 – 14 P236 – D237 14 S4K238 – Q242 14 - H P243 ElementSheetResidues BB Q85 B – 5 D86 – L92 55 G93 – P97 5 – 6 A98 – K103 66 S3K104 – G112 CC D113 – V118 C – D P119 8 – E Q151 – W153 EE K154 – Q174 E – 9 N175 – D177 99 S3I178 – Y183 9 – 10 M184 – D185 2 -sheets: S3, S4 3 -helices: C, E, F
34
-helices C, E, F Rasmol Palm EE CC FF
35
-sheet 3 Rasmol Palm
36
Rasmol -sheet 4 Palm
37
Rasmol S3 S4 CC FF EE
38
S191/H198 interaction Kinemage
39
Template Grip ResidueRegionSubdomain D76 44 Fingers E89 B- 5 Palm Q151 8- E Palm G152 8- E Palm K154 8- E Palm P157 EE Palm
40
Template Grip Kinemage Biopolymer 44, 125-138 (1997) 8- E loop: Q151 & G152 interact with sugar-phosphate backbone of Tem-1 & Tem1 Main-chain atoms K154 with sugar-phosphate backbone of Tem1 & Tem2 P157 maintain b8-aE loop and position Q151, G152, K154 B – 5 loop: E89oe2 H-bonds with O 3´ of Tem2
41
Primer Grip ResidueRegionSubdomain W229 12- 13 Palm M230 12- 13 Palm G231 12- 13 Palm Y232 12- 13 Palm Kinemage M230 & G231 interact with nucleotides of 3´-primer terminus
42
dNTP Pocket Structure = 1rtd Science 282, 1669-1675 (1998) Kinemage Triphosphate moiety is coordinated by K65, R72, main-chain –NH groups of D113 & A114 Guanidinium group of R72 lies flat against dNTP base & H-bonds with -phosphate E-amino group of K65 H-bonds with g-phosphate Main-chain –NH of Y115 H-bonds with O3* of dTTP
43
Palm Residues 85-119 Residues 151-243 Rasmol
44
Thumb – Secondary structure ElementSheetResidues 14 - H I244 – W252 HH T253 – S268 H – I Q269 – K275 II V276 – K281 I – J L282 – E297 JJ E298 – L310 J – 15 K311 – V314 15 S4H315 – Y319 15 – 16 D320 – D322 1 -sheet: S4 3 -helices: H, I, J
45
-helices H, I, J Rasmol Thumb HH II JJ
46
-sheet 4 Rasmol Palm Thumb
47
Rasmol S4 HH II JJ
48
Primer-Template interactions with Thumb Kinemage Biopolymer 44, 125-138 (1997) Helix H Q258, K259, G262, K263, W266 vdw with sugar-phosphate backbone of Pri3 – Pri6 Q258ne2 H-bond with sugar O 4´ atom of Pri6 K263nz salt bridge with phosphate O 2P of Pri3 N265nd2 H-bond with ribose O 3´ of Tem6 Helix I S280, R284, G285, T286 vdw with sugar-phosphate backbone of Tem7 – Tem9 Amide N of G285 H-bonds O 1P & O 2P of Tem9
49
Unliganded RT (1dlo) – thumb folded into DNA-binding cleft DNA-bound RT (2hmi) – thumb adopts an upright position Flexibility of Thumb Thumb’s knuckle = near residues W239 ( 14) & V317 ( 15) Kinemage
50
Connection – Secondary structure ElementSheetResidues 15 – 16 K323 – L325 16 S5I326 – K331 16 – 17 Q332 – G335 17 S5Q336 – Y342 17 – 18 Q343 – N348 18 S5L349 – A355 18 – K R356 – N363 KK D364 – W383 1 -sheet: S5 + S5A 2 -helices: K, L ElementSheetResidues K – 19 G384 – T386 19 S5P387 – L391 19 – L P392 – Q394 LL K395 – E404 L – 20 Y405 – Q407 20 S5AA408 – P412 21 S5E413 – N418 21 – R1 T419 – A437
51
-helices K and L Rasmol Connection LL KK
52
-sheet 5 Rasmol Connection
53
Rasmol S5 S5a LL KK
54
Tryptophans in Connection Rasmol S5 S5a
55
p66 p51 Dimer Interface
56
Tryptophans at Dimer Interface p66 p51 Kinemage
57
RNase H – Secondary structure ElementSheetResidues R1R1 R1E438 – N447 R 1 – R 2 R448 – K451 R2R2 R1L452 – T459 R 2 – R 3 N460 – R461 R3R3 R1G462 – T470 R 3 – R A D471 – T473 RARA N474 – D488 R A – R A S489 – L491 R4R4 R1E492 – T497 1 -sheet: R1 4 -helices: a R A, R B, R D, R E ElementSheetResidues R 4 - R B D498 – S499 RBRB Q500 – A508 R B - R D Q509 – S515 RDRD E516 – K527 R D – R 5 K528 – E529 R5R5 R1K530 – V536 R 5 - R E P537 – G543 RERE G544 – G555 I556 – L560
58
-helices R A, R B, R D, R E Rasmol RBRB RNase H RDRD RERE RARA
59
-sheet R 1 Rasmol RNase H
60
Rasmol SR1SR1 RBRB RDRD RARA RERE
61
RNase H active site H539 ( R 5- R E) D549 ( R E) D443 ( R 1) E478 ( R A) D498 ( R 4- R B) Rasmol Kinemage with DNA:
62
-Helices in HIV-1 RT HelixSubdomain Afingers B Cpalm Dfingers Epalm F Hthumb I HelixSubdomain Jthumb Kconnection L RARARNase H RBRB RDRD RERE Total = 15 -helices
63
-Sheets in HIV-1 RT SheetStrandsSubdomain S1 2, 7, 8 fingers S2 3, 4 fingers S3 6, 9, 10, 11 palm S4 12, 13, 14, 15 palm/thumb S5 16, 17, 18, 19, 21 connection S5A 20 connection R1 R 1, R 2, R 3, R 4, R 5 RNase H Total = 6 -sheets
64
Action of DNA Polymerases Voet Fig. 24-2
65
Steps in DNA polymerization Binding of template-primer Binding of incoming dNTP Phosphodiester bond formation Release of pyrophosphate Translocation / Dissociation
66
E E´—DNA n Step 1 in DNA polymerization Template-Primer binds to unliganded enzyme DNA n
67
E´—DNA n E´—DNA n —dNTP Step 2 in DNA polymerization Initiation of nucleotide incorporation dNTP
68
E´—DNA n —dNTP E*—DNA n —dNTP Step 3 in DNA polymerization Conversion to an activated complex
69
E*—DNA n —dNTP E—DNA n+1 Step 4 in DNA polymerization SN2 nucleophilic attack by the 3'-OH primer terminus on the -phosphate of dNTP resulting in phosphodiester formation and removal of pyrophosphate product PPi
70
Nucleophilic attack by the 3' –OH catalyzes the phospho- Diester bond formation Note that PPi is released Action of DNA Polymerases- Another look
71
Nucleotides Science 264, 1891-1903 (1994)
72
DNA Polymerization Science 264, 1891-1903 (1994)
73
Active Site for Polymerization D185 D110 D186 EE FF 99 10 66 Aspartic Acid Triad
74
HIV-1 RT: Polymerase Active Site Arnold Current Opinion in Structural Biology 5, 27-38 (1995)
75
DNA polymerization at HIV-1 RT active site Figure from CSH Symposia on Quant. Biol., Vol 53, pp 495-504 (1993) Based on Protein Engineering 3, 461-467 (1990) Steitz
76
Model of DNA polymerization at HIV-1 RT active site Journal of Biomolecular Structure & Dynamics 12, 037-060 (1994)
77
Model of HIV-1 RT polymerase active site Journal of Biomolecular Structure & Dynamics 12, 037-060 (1994)
78
pol “THE MOVIE”
79
Coming to a URL near you http://chem-faculty.ucsd.edu/kraut/bpol.html
80
Based on the Novel:
81
pol Smallest eukaryotic cellular DNA polymerase (39 kD) Role: Fills single nucleotide gaps in DNA produced by the base excision pathway pol has 2 subunits: Nucleotidyl transfer activity (C-terminal 31 kD domain) Deoxyribosephosphate lyase activity (N-terminal 8 kD domain)
82
Conformational changes of the THUMB during the catalytic cycle Biochemistry 36, 11205-11215 (1997) Watch for motion of Thumb & 8 kD domain Gray = ternary complex Black = binary complex
83
Movie 1 View
84
Catalytic Aspartate 192 With Thumb closure, F272 moves to disrupt R258-D192 H-bond D192 binds Mg E295 & Y296 position to H-bond with R258 (preventing R258 interference with D192) Biochemistry 36, 11205-11215 (1997) Gray = ternary complex Black = binary complex
85
Movie 2 View
86
dNTP position With Thumb closure, H-bond donors of helix K (S180, R183, G189) interact with - and -phosphates of incoming dNTP Biochemistry 36, 11205-11215 (1997) Gray = ternary complex Black = binary complex
87
Movie 3 View
88
Template Position Gray = ternary complex Black = binary complex Biochemistry 36, 11205-11215 (1997) With Thumb closure, template is positioned to base-pair with dNTP
89
Movie 4 View
90
Role of AA in HIV-1 RT Database List of fields: Amino Acid: P1, I2, S3, P4, …. D110 … S191 … W401 … L560 Location: -helices, -sheets, loops, random coils Sheet: -sheets Subdomain: fingers, palm, thumb, connection, RNase H Region: described in literature (example: primer-grip) Motif: motif A, motif C Role: from journal articles Structure: role from structure papers FSE: functional, stability, external residues (defined by HutchLab) Eickbush alignment Mutations: from other labs HutchLab: mutations made by Hutchison lab Inhibitor class: NNRTI, NRTI Resistance
91
John’s RT databases HIV-1 RT mutant data (phenotype & genotype) from HutchLab & others Role of Amino Acid Residues in the HIV-1 RT HIV-1 RT H-bonds HIV-1 RT van der Waals interactions HIV-1 RT inhibitors Retro RT H-bonds (from models, except MMLV) Retro RT database (Eickbush alignment, variability) Procam Results for HIV-1 and other retro RTs
93
Alternative classification scheme for the amino acids
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.