Download presentation
Presentation is loading. Please wait.
Published byAdelia Price Modified over 9 years ago
2
ECE 3110: Introduction to Digital Systems Chapter 5 Combinational Logic Design Practices X-OR gates and Parity circuits Comparators Adders, subtractors, ALUs
3
2 Previous class Building blocks Encoders/priority encoders Three state buffers/inverters Multiplexers/demultiplexers
4
3 Exclusive OR and Exclusive NOR Gates XOR : XNOR : Truth Table : XOR X Y XOR XNOR 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 XOR X Y F X Y F
5
4 XOR and XNOR Symbols Equivalent Symbols of XOR gate Equivalent Symbols of XNOR gate Any 2 signals (inputs or outputs) may be complemented without changing the resulting logic function
6
5 SSI XOR and XNOR 74x86 : 4 XOR gates 74x266: 4 XNOR gates with “open collector” or “open drain” output
7
6 XOR Application: Parity Circuit Odd Parity Circuit : The output is 1 if odd number of inputs are 1 Even Parity Circuit : The output is 1 if even number of inputs are 1 Example : 4 bit Parity Circuit : Daisy-Chain Structure Tree structure Input : 1101 Odd Parity output : 1 Even Parity output: 0 I0 I1 I2 I3 ODD EVEN I0 I1 I2 I3 ODD EVEN
8
7 MSI Parity Circuit : 74x280
9
8 Parity-Checking Application:memory
10
9 Comparators Compares Two binary words and indicate if they are equal Magnitude Comparators : A Comparator OUTPUT B A Comparator A=B B A>B A<B
11
10 Equality Comparators 1-bit comparator 4-bit comparator EQ_L
12
11 General structure of an iterative combinational circuit
13
12 Multibit Iterative Comparator
14
13 MSI Comparator : 74x85 4 bit comparator 3 outputs : A=B, A B 3 Cascading inputs Functional Output equations : (A>B OUT)= (A>B)+(A=B).(A>B IN) (A<B OUT)= (A<B)+(A=B).(A<B IN) (A=B OUT)= (A=B).(A=B IN) Cascading inputs initial values : (A=B IN) =1 (A>B IN) =0 (A<B IN) =0 B0 A1 B1 A2 B2 A3 A0 B3 74x85 A<BIN A=BIN A>BIN A<BOUT A=B OUT A>BOUT
15
14 8 bit Comparator B0 A1 B1 A2 B2 A3 A0 B3 74x85 A<BIN A=BIN A>BIN A<BOUT A=B OUT A>BOUT B0 A1 B1 A2 B2 A3 A0 B3 74x85 A<BIN A=BIN A>BIN A<BOUT A=B OUT A>BOUT B0 A1 B1 A2 B2 A3 A0 B3 B4 A5 B5 A6 B6 A7 A4 B7 +5V A<B A=B A>B Most Significant bitsLeast Significant bits
16
15 8-bit Magnitude Comparator
17
16 Other conditions
18
ECE311 Ch5 17 Adders/Subtractors Half Adder Full Adder Ripple Adder Full Subtractor Ripple Subtractor Adder/Subtractor Circuit
19
ECE311 Ch5 18 Half Adder: adds two 1-bit operands Truth table : X Y HS=(X+Y) CO 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 Y X H S CO
20
19 Full Adders: provide for carries between bit positions Basic building block is “full adder” 1-bit-wide adder, produces sum and carry outputs Truth table: XYCinSCout 00000 00110 01010 01101 10010 10101 11001 11111 S is 1 if an odd number of inputs are 1. COUT is 1 if two or more of the inputs are 1. Recall: Table 2-3, pp32
21
20 Full-adder circuit
22
21 Ripple adder Speed limited by carry chain Faster adders eliminate or limit carry chain 2-level AND-OR logic ==> 2 n product terms 3 or 4 levels of logic, carry lookahead
23
22 74x283 4-bit adder Uses carry lookahead internally
24
23 16-bit group- ripple adder
25
24 Subtraction Subtraction is the same as addition of the two’s complement. The two’s complement is the bit-by-bit complement plus 1. Therefore, X – Y = X + Y’ + 1
26
25 Full subtractor = full adder, almost X,Y are n-bit unsigned binary numbers Addition : S = X + Y Subtraction : D = X - Y = X + (-Y) = = X+ (Two’s Complement of Y) = X+ (One’s Complement of Y) + 1 = X+ Y’+ 1
27
ECE311 Ch5 26 Using Adder as a Subtractor Ripple Adder can be used as a subtractor by inverting Y and setting the initial carry ( CIN ) to 1
28
ECE311 Ch5 27 MSI Arithmetic Logic Units (ALU ) ALU performs Aithmetic and Logical Functions - A, B : 4 bits inputs - S3,S2,S1,S0 : Function select - M=0 : Arithmetic operations +=Plus, - = Minus M=1 : Logical operations : += OR,. =AND Example : Inputs Functions S3 S2 S1 S0 M=0 M=1 0 0 0 0 F= A-1+CIN F=A’ 0 1 1 0 F= A-B-1+CIN F=A XOR B’ 1 0 0 1 F= A+B+CIN F=A XOR B 1 0 1 1 F=(A OR B)+ CIN F=A+B 1 1 0 0 F= A+A+CIN F= 0000 1 1 1 1 F=A+CIN F=A S1 S2 S3 F1 F2 M CIN A0 S0 F0 B0 74x181 F3 COUT A1 B1 A2 B2 A3 B3 A=B P G
29
ECE311 Ch5 28 Chapter Summary Documentation Standards: - Gate symbols, Signals Active Levels, Bubble to Bubble Logic - Block diagram, Schematic Diagram, Timing Diagram. Combinational Logic design Structures: 1-Decoders : Binary Decoders, Cascading decoders, Implementing Logic Functions, Seven-Segment Decoders (HW5.18). 2-Encoders : Binary Encoder, Priority Encoder, Cascading Encoders, Encoder applications. 3-Three State Buffers : SSI buffers, MSI Octal Buffer, Octal Three-state Transceiver
30
29 Chapter Summary 4- Multiplexers : MUX operation, Single/Multiple outputs MUX, Expanding MUXs 5- Demultiplexers : MUX/DMUX operation, Using Decoders as Demultiplexers. 6- XOR and XNOR Gates: Logic Symbols, Equivalent Symbols, Parity Circuits using XOR gate, Parity Circuit application ( memory unit checking ) 7- Comparators : Parallel Comparators, Iterative Comparators, Cascading Comparators 8-Adders : Half Adder, Full Adder, Ripple Adder, Subtractor, Ripple Adder / Subtractor Unit,Group-Ripple Adder 9- Arithmetic Logic Units
31
30 Next… HW #9 Combinational circuits Design examples Reading Wakerly Chapter 6
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.