Download presentation
Published byCody Howard Modified over 9 years ago
1
Canadian Neutron Beam Centre, National Research Council
The Magnetic Phase Diagram of (Sr,Ca)2(Ru,Ti)O4 Revealed by mSR Jeremy P. Carlo Columbia University Canadian Neutron Beam Centre, National Research Council June 2, 2010
2
Outline Overview The SR method (Sr,Ca)2RuO4 & Sr2(Ru,Ti)O4
Correlated electron materials Magnetic order Superconductors The SR method Local probe of magnetism (Sr,Ca)2RuO4 & Sr2(Ru,Ti)O4 Superconductivity Magnetic Phase Diagram
3
Overview Relation between magnetic order & superconductivity
BCS: Cooper pairs: electron-phonon interaction High-Tc: magnetic fluctuations more important “Canonical” cuprate phase diagram: Parent compound: AF Magnetic order close to SC dome
5
Overview Ongoing questions:
Behavior of different families of unconventional SCs? Cuprates Heavy fermion SCs Organic SCs Sr2RuO4 Fe pnictides etc. How do magnetism / magnetic fluctuations relate? “Normal” state behavior, M-I / structural links? Holy Grail: What is the comprehensive theory of unconventional superconductivity? Present Study
6
The SR method Production of muons
Protons extracted from cyclotron/synchrotron p + low Z production target → + + stuff + → + + parity violation: beam is spin polarized separate out positrons, etc. collimate / steer beam to sample Polarized muon sources: TRIUMF, Vancouver BC PSI, Switzerland ISIS, UK (pulsed) KEK, Japan (pulsed)
8
Continuous-beam SR Muon beam Positive muons +
Can rotate polarization Insert muons one at a time Come to rest Interstitial sites Near anions Along bonds
9
e = E / Emax normalized e+ energy
Decay Asymmetry Muon spin at decay Detection: + → e+ + + e e = E / Emax normalized e+ energy
10
e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D
11
e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D U
12
e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D U D
13
e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D U D D more…
14
asy(t) = A0 Gz(t) (+ baseline)
Histograms for opposing counters asy(t) = A0 Gz(t) (+ baseline) a Total asymmetry ~ Muon spin polarization function 135.5 MHz/T Represents muons in a uniform field
15
Field configurations ZF-SR: sees: field due to nearby moments
Spontaneous ordering? Precession Rapid relaxation T-dependence (in-plane doping) vs. out-of-plane doping T-dependence (out-of-plane doping) vs. in-plane doping Example (CuCl)LaNb2O7 La NbO6 [CuCl]+
16
Field configurations LF-SR: Decoupling if Happl ~ Bint Example
sees: skewed local field distribution Static order Decoupling if Happl ~ Bint Dynamic order No decoupling Drift of “1/3 tail” H initial muon spin
17
Field configurations wTF-SR:
Calibration of baseline (a), total asymmetry (A0) sees: (mostly) applied field (paramagnetic state), appl. + internal fields (ordered state) H initial muon spin Determine ordered, PM fractions Example
18
Field configurations (strong) TF-SR: Order induced by applied field
Metamagnetism, etc. Vortex lattice in Type-II SC Rlx √<B2> 1/2 ns /m* = penetration depth ns /m* = superfluid density Polyxtal samples: distribution broadened ~ Gaussian => Gaussian rlx => 1/2 => sf. density H initial muon spin J. E. Sonier, 1998 & 2007
19
Srn+1RunO3n+1 Ruddlesden-Popper series n=: SrRuO3 (113)
perovskite structure Ferromagnetic, Tc 165K n=3: Sr4Ru3O10 (4-3-10) multi-layered structure FM, Tc 105K n=2: Sr3Ru2O7 (327) quantum metamagnetism FM, AF fluctuations mag. ordering w/ Mn n=1: Sr2RuO4 (214) Unconventional SC Tc 1.5K Spin-triplet pairing, p-wave isostructural to LBCO, LSCO Sr
20
(Sr,Ca)RuO3 = ‘113’ Past Work: n= 3-D structure Ca/Sr substitution
SrxCa1-xRuO3 isoelectronic doping FM suppressed x 0.25 Phase separation, QPT
21
Sr2RuO4 = ‘214’ n=1 SC state (Maeno et al. 1994) Tc up to 1.5 K
MacKenzie & Maeno, 2003 Fermi surface: n=1 SC state (Maeno et al. 1994) Tc up to 1.5 K NMR: Spin-triplet pairing TRSB – (Luke et al. 1996) distinguish between p-wave states Incommensurate spin fluctuations q ≈ (0.6/a, 0.6/a, 0) Normal state: 2-D Fermi liquid Doping: “Out-of-plane:” Ca on Sr site: SrxCa2-xRuO4 “In-plane:” Ti on Ru site: Sr2Ru1-yTiyO4 Small doping on either site suppresses SC Luke et al. 1996
22
Ca2RuO4 AF insulator, moment 1.3B
Competition between A- and B- type ordering TN K Ca doping induces Mott transition Decreased bandwidth Increased on-site Coulomb repulsion → Increased U/W Ru-Ru in-plane dist > Sr2RuO4 RuO6 flattening, tilting
23
Ca2-xSrxRuO4 M-I transition near x=0.2 (I-II) Near x=0.5: (II-III)
2K: M-I transition near x=0.2 (I-II) Near x=0.5: (II-III) Sharp increase in susceptibility Correlations more FM-ish Low higher x Old Picture: Ordering at low x only Antiferro. near x=0 Susc. peak near x=0.5 Paramagnetic at higher x SC at x=2 SR: Rapid relaxation observed 0.2 ≤ x ≤ 1.6 Peaks near x 0.5, 1.5 Ordered ground state throughout! Nakatsuji & Maeno, 2000. Nakatsuji & Maeno, 2003.
24
Sr2Ru1-yTiyO4 y=0: SC Sr2RuO4 <0.2% Ti doping suppresses Tc
>2.5% doping induces magnetic ground state neutrons: Braden et al. (2002) Incommensurate AF in y=0.09 q (0.3, 0.3, qz) SR: rapid relaxation with increasing y. from MacKenzie et al. 2003
25
Experiments Samples (Ca2-xSrx)2RuO4 x = 0.0, 0.2, 0.3, 0.5, 0.57, 0.65, 0.9, 1.0, 1.4, 1.5, 1.6, 1.8, 1.95 Sr2(Ru1-yTiy)O4 y = 0.01, 0.03, 0.05, 0.09 single xtals from Kyoto U. (Maeno et al. or Tsukuba (Yoshida et al. ZF- & LF-mSR: M20 (LAMPF) and/or M15 (DR) DC Susceptibility: ZFC, FC, H ~ G Dilution fridge 15mK < T < 10K He gas-flow cryo 1.7K < T < 300K
26
Ca2RuO4 Ca2RuO4 ZF-SR SR spectra: Sum of 2 frequencies
27
ZF-SR Temperature Scans (Ca,Sr) system
28
ZF-SR Temperature Scans
(Ru,Ti) system
29
Edwards-Anderson order parameter
Uemura “spin glass” function (Uemura, 1985): dynamic static d as “root-exponential” “Lorentzian Kubo-Toyabe” Field width as = a √Q ld = 4a2(1-Q)/n Fluctuation rate
30
ZF Relaxation vs. Temp: Magnetic ordering!
Define: Rlx = sqrt ( d2 + as2 ) Fit to: Rlx(T) = R [ 1 – (T/To)g ] zoom all Ti only Ca only
31
LF @ base temp: decoupling → static order
Fit to tanh(H/Ho) Static ordering at base temp!
32
LF temp scans: map out dynamics
33
Comparison of ZF & LF field estimates
tanh(H/Ho) R [ 1 – (T/To)g ]
35
Adapted from Braden et al. (2002)
Neutrons: Braden Muons: present study
36
DC Susceptibility Curie-Weiss: more AF
37
Old view: New View:
38
Summary: (Sr,Ca)2(Ru,Ti)O4
Past: Sr2RuO4 p-wave SC Tc 1.5K, TRSB magnetic fluctuations Sr2Ru1-yTiyO4 y suppresses SC neutrons: incommensurate AF y = 0.09 Ca2RuO4 AF insulator TN K Sr2-xCaxRuO4 M-I transition x 0.2 susceptibility peak x 0.5 New: Sr2-xCaxRuO4 muons : magnetic order over almost entire range x = 0: commensurate AF, gone by x = 0.2 peaks x 0.5 (FM-ish?), 1.5 (more AF) incommensurate AF / SDW ? need long-range magnetic probe! Sr2Ru1-yTiyO4 muons: rapid relaxation y ≥ 0.03 susc: large negative w → AF
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.