Presentation is loading. Please wait.

Presentation is loading. Please wait.

Canadian Neutron Beam Centre, National Research Council

Similar presentations


Presentation on theme: "Canadian Neutron Beam Centre, National Research Council"— Presentation transcript:

1 Canadian Neutron Beam Centre, National Research Council
The Magnetic Phase Diagram of (Sr,Ca)2(Ru,Ti)O4 Revealed by mSR Jeremy P. Carlo Columbia University Canadian Neutron Beam Centre, National Research Council June 2, 2010

2 Outline Overview The SR method (Sr,Ca)2RuO4 & Sr2(Ru,Ti)O4
Correlated electron materials Magnetic order Superconductors The SR method Local probe of magnetism (Sr,Ca)2RuO4 & Sr2(Ru,Ti)O4 Superconductivity Magnetic Phase Diagram

3 Overview Relation between magnetic order & superconductivity
BCS: Cooper pairs: electron-phonon interaction High-Tc: magnetic fluctuations more important “Canonical” cuprate phase diagram: Parent compound: AF Magnetic order close to SC dome

4

5 Overview Ongoing questions:
Behavior of different families of unconventional SCs? Cuprates Heavy fermion SCs Organic SCs Sr2RuO4 Fe pnictides etc. How do magnetism / magnetic fluctuations relate? “Normal” state behavior, M-I / structural links? Holy Grail: What is the comprehensive theory of unconventional superconductivity? Present Study

6 The SR method Production of muons
Protons extracted from cyclotron/synchrotron p + low Z production target → + + stuff + → + +  parity violation: beam is spin polarized separate out positrons, etc. collimate / steer beam to sample Polarized muon sources: TRIUMF, Vancouver BC PSI, Switzerland ISIS, UK (pulsed) KEK, Japan (pulsed)

7

8 Continuous-beam SR Muon beam Positive muons +
Can rotate polarization Insert muons one at a time Come to rest Interstitial sites Near anions Along bonds

9 e = E / Emax normalized e+ energy
Decay Asymmetry Muon spin at decay Detection: + → e+ + + e e = E / Emax normalized e+ energy

10 e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D

11 e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D U

12 e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D U D

13 e+ m+ e+ detector U incoming muon counter sample detector time D 2.5
e+ detector D U D D more…

14 asy(t) = A0 Gz(t) (+ baseline)
Histograms for opposing counters asy(t) = A0 Gz(t) (+ baseline) a Total asymmetry ~ Muon spin polarization function 135.5 MHz/T Represents muons in a uniform field

15 Field configurations ZF-SR:  sees: field due to nearby moments
Spontaneous ordering? Precession Rapid relaxation T-dependence (in-plane doping) vs. out-of-plane doping T-dependence (out-of-plane doping) vs. in-plane doping Example (CuCl)LaNb2O7 La NbO6 [CuCl]+

16 Field configurations LF-SR: Decoupling if Happl ~ Bint Example
 sees: skewed local field distribution Static order Decoupling if Happl ~ Bint Dynamic order No decoupling Drift of “1/3 tail” H  initial muon spin

17 Field configurations wTF-SR:
Calibration of baseline (a), total asymmetry (A0)  sees: (mostly) applied field (paramagnetic state), appl. + internal fields (ordered state) H  initial muon spin Determine ordered, PM fractions Example

18 Field configurations (strong) TF-SR: Order induced by applied field
Metamagnetism, etc. Vortex lattice in Type-II SC Rlx  √<B2>  1/2  ns /m*  = penetration depth ns /m* = superfluid density Polyxtal samples: distribution broadened ~ Gaussian => Gaussian rlx => 1/2 => sf. density H  initial muon spin J. E. Sonier, 1998 & 2007

19 Srn+1RunO3n+1 Ruddlesden-Popper series n=: SrRuO3 (113)
perovskite structure Ferromagnetic, Tc  165K n=3: Sr4Ru3O10 (4-3-10) multi-layered structure FM, Tc  105K n=2: Sr3Ru2O7 (327) quantum metamagnetism FM, AF fluctuations mag. ordering w/ Mn n=1: Sr2RuO4 (214) Unconventional SC Tc  1.5K Spin-triplet pairing, p-wave isostructural to LBCO, LSCO Sr

20 (Sr,Ca)RuO3 = ‘113’ Past Work: n= 3-D structure Ca/Sr substitution
SrxCa1-xRuO3 isoelectronic doping FM suppressed x  0.25 Phase separation, QPT

21 Sr2RuO4 = ‘214’ n=1 SC state (Maeno et al. 1994) Tc up to 1.5 K
MacKenzie & Maeno, 2003 Fermi surface: n=1 SC state (Maeno et al. 1994) Tc up to 1.5 K NMR: Spin-triplet pairing TRSB – (Luke et al. 1996) distinguish between p-wave states Incommensurate spin fluctuations q ≈ (0.6/a, 0.6/a, 0) Normal state: 2-D Fermi liquid Doping: “Out-of-plane:” Ca on Sr site: SrxCa2-xRuO4 “In-plane:” Ti on Ru site: Sr2Ru1-yTiyO4 Small doping on either site suppresses SC Luke et al. 1996

22 Ca2RuO4 AF insulator, moment 1.3B
Competition between A- and B- type ordering TN  K Ca doping induces Mott transition Decreased bandwidth Increased on-site Coulomb repulsion → Increased U/W Ru-Ru in-plane dist > Sr2RuO4 RuO6 flattening, tilting

23 Ca2-xSrxRuO4 M-I transition near x=0.2 (I-II) Near x=0.5: (II-III)
2K: M-I transition near x=0.2 (I-II) Near x=0.5: (II-III) Sharp increase in susceptibility Correlations more FM-ish Low higher x Old Picture: Ordering at low x only Antiferro. near x=0 Susc. peak near x=0.5 Paramagnetic at higher x SC at x=2 SR: Rapid relaxation observed 0.2 ≤ x ≤ 1.6 Peaks near x  0.5, 1.5 Ordered ground state throughout! Nakatsuji & Maeno, 2000. Nakatsuji & Maeno, 2003.

24 Sr2Ru1-yTiyO4 y=0: SC Sr2RuO4 <0.2% Ti doping suppresses Tc
>2.5% doping induces magnetic ground state neutrons: Braden et al. (2002) Incommensurate AF in y=0.09 q  (0.3, 0.3, qz) SR: rapid relaxation with increasing y. from MacKenzie et al. 2003

25 Experiments Samples (Ca2-xSrx)2RuO4 x = 0.0, 0.2, 0.3, 0.5, 0.57, 0.65, 0.9, 1.0, 1.4, 1.5, 1.6, 1.8, 1.95 Sr2(Ru1-yTiy)O4 y = 0.01, 0.03, 0.05, 0.09 single xtals from Kyoto U. (Maeno et al. or Tsukuba (Yoshida et al. ZF- & LF-mSR: M20 (LAMPF) and/or M15 (DR) DC Susceptibility: ZFC, FC, H ~ G Dilution fridge 15mK < T < 10K He gas-flow cryo 1.7K < T < 300K

26 Ca2RuO4 Ca2RuO4 ZF-SR SR spectra: Sum of 2 frequencies

27 ZF-SR Temperature Scans (Ca,Sr) system

28 ZF-SR Temperature Scans
(Ru,Ti) system

29 Edwards-Anderson order parameter
Uemura “spin glass” function (Uemura, 1985): dynamic static d as “root-exponential” “Lorentzian Kubo-Toyabe” Field width as = a √Q ld = 4a2(1-Q)/n Fluctuation rate

30 ZF Relaxation vs. Temp: Magnetic ordering!
Define: Rlx = sqrt ( d2 + as2 ) Fit to: Rlx(T) = R [ 1 – (T/To)g ] zoom all Ti only Ca only

31 LF @ base temp: decoupling → static order
Fit to tanh(H/Ho) Static ordering at base temp!

32 LF temp scans: map out dynamics

33 Comparison of ZF & LF field estimates
tanh(H/Ho) R [ 1 – (T/To)g ]

34

35 Adapted from Braden et al. (2002)
Neutrons: Braden Muons: present study

36 DC Susceptibility Curie-Weiss: more AF

37 Old view: New View:

38 Summary: (Sr,Ca)2(Ru,Ti)O4
Past: Sr2RuO4 p-wave SC Tc  1.5K, TRSB magnetic fluctuations Sr2Ru1-yTiyO4 y  suppresses SC neutrons: incommensurate AF y = 0.09 Ca2RuO4 AF insulator TN  K Sr2-xCaxRuO4 M-I transition x  0.2 susceptibility peak x  0.5 New: Sr2-xCaxRuO4 muons : magnetic order over almost entire range x = 0: commensurate AF, gone by x = 0.2 peaks x  0.5 (FM-ish?), 1.5 (more AF) incommensurate AF / SDW ? need long-range magnetic probe! Sr2Ru1-yTiyO4 muons: rapid relaxation y ≥ 0.03 susc: large negative w → AF


Download ppt "Canadian Neutron Beam Centre, National Research Council"

Similar presentations


Ads by Google