Download presentation
Presentation is loading. Please wait.
Published byAmie Skinner Modified over 9 years ago
2
600.445; Copyright © 1999, 2000, 2001 rht+sg Introduction to Vectors and Frames CIS - 600.445 Russell Taylor Sarah Graham
3
600.445; Copyright © 1999, 2000, 2001 rht+sg x x x CT image Planned hole Pins Femur Tool path COMMON NOTATION: Use the notation F obj to represent a coordinate system or the position and orientation of an object (relative to some unspecified coordinate system). Use F x,y to mean position and orientation of y relative to x.
4
600.445; Copyright © 1999, 2000, 2001 rht+sg x x x CT image Planned hole Pins Femur Tool path
5
600.445; Copyright © 1999, 2000, 2001 rht+sg CT image Pin 1Pin 2Pin 3 Planned hole Tool path Femur Assume equal x x x
6
600.445; Copyright © 1999, 2000, 2001 rht+sg
7
x x x x x x
8
Base of robot CT image Pin 1Pin 2Pin 3 Planned hole Tool holder Tool tipTool path Femur Assume equal Can calibrate (assume known for now) Can control Want these to be equal
9
600.445; Copyright © 1999, 2000, 2001 rht+sg Base of robot Tool holder Tool tipTarget
10
600.445; Copyright © 1999, 2000, 2001 rht+sg CT image Pin 1Pin 2Pin 3 Planned hole Tool path Femur Assume equal
11
600.445; Copyright © 1999, 2000, 2001 rht+sg CT image Pin 1Pin 2Pin 3 Tool path Base of robot Tool holder Tool tip
12
600.445; Copyright © 1999, 2000, 2001 rht+sg CT image Pin 1Pin 2Pin 3 Tool path Base of robot Tool holder Tool tip But: We must find F CT … Let’s review some math
13
600.445; Copyright © 1999, 2000, 2001 rht+sg x0x0 y0y0 z0z0 x1x1 y1y1 z1z1 F Coordinate Frame Transformation
14
600.445; Copyright © 1999, 2000, 2001 rht+sg
15
b F = [R,p]
16
600.445; Copyright © 1999, 2000, 2001 rht+sg b F = [R,p]
17
600.445; Copyright © 1999, 2000, 2001 rht+sg b F = [ I,0]
18
600.445; Copyright © 1999, 2000, 2001 rht+sg b F = [R,0]
19
600.445; Copyright © 1999, 2000, 2001 rht+sg b F = [R,p]
20
600.445; Copyright © 1999, 2000, 2001 rht+sg Coordinate Frames b F = [R,p]
21
600.445; Copyright © 1999, 2000, 2001 rht+sg
22
Forward and Inverse Frame Transformations Forward Inverse
23
600.445; Copyright © 1999, 2000, 2001 rht+sg Composition
24
600.445; Copyright © 1999, 2000, 2001 rht+sg Vectors v x y z w vw u = v x w
25
600.445; Copyright © 1999, 2000, 2001 rht+sg Vectors as Displacements v z w v+w x y v w v-w x y w
26
600.445; Copyright © 1999, 2000, 2001 rht+sg Vectors as Displacements Between Parallel Frames v0v0 x0x0 y0y0 z0z0 x1x1 y1y1 z1z1 v1v1 w
27
600.445; Copyright © 1999, 2000, 2001 rht+sg Rotations: Some Notation
28
600.445; Copyright © 1999, 2000, 2001 rht+sg Rotations: A few useful facts
29
600.445; Copyright © 1999, 2000, 2001 rht+sg Rotations: more facts
30
600.445; Copyright © 1999, 2000, 2001 rht+sg Rotations in the plane
31
600.445; Copyright © 1999, 2000, 2001 rht+sg Rotations in the plane
32
600.445; Copyright © 1999, 2000, 2001 rht+sg 3D Rotation Matrices
33
600.445; Copyright © 1999, 2000, 2001 rht+sg Inverse of a Rotation Matrix equals its transpose: R -1 = R T R T R=R R T = I The Determinant of a Rotation matrix is equal to +1: det(R)= +1 Any Rotation can be described by consecutive rotations about the three primary axes, x, y, and z: R = R z, R y, R x, Properties of Rotation Matrices
34
600.445; Copyright © 1999, 2000, 2001 rht+sg Canonical 3D Rotation Matrices Note: Right-Handed Coordinate System
35
600.445; Copyright © 1999, 2000, 2001 rht+sg Homogeneous Coordinates Widely used in graphics, geometric calculations Represent 3D vector as 4D quantity For our purposes, we will keep the “scale” s = 1
36
600.445; Copyright © 1999, 2000, 2001 rht+sg Representing Frame Transformations as Matrices
37
600.445; Copyright © 1999, 2000, 2001 rht+sg x x x x x x
38
CT image Pin 1Pin 2Pin 3 Base of robot Tool holder Tool tip
39
600.445; Copyright © 1999, 2000, 2001 rht+sg CT image Pin 1Pin 2Pin 3 Base of robot Tool holder Tool tip
40
600.445; Copyright © 1999, 2000, 2001 rht+sg CT image Pin 1Pin 2Pin 3 Base of robot Tool holder Tool tip
41
600.445; Copyright © 1999, 2000, 2001 rht+sg Frame transformation from 3 point pairs x x x x x x
42
600.445; Copyright © 1999, 2000, 2001 rht+sg Frame transformation from 3 point pairs x x x
43
600.445; Copyright © 1999, 2000, 2001 rht+sg Frame transformation from 3 point pairs x x x x x x x x Solve These!!
44
600.445; Copyright © 1999, 2000, 2001 rht+sg Rotation from multiple vector pairs
45
600.445; Copyright © 1999, 2000, 2001 rht+sg Renormalizing Rotation Matrix
46
600.445; Copyright © 1999, 2000, 2001 rht+sg Calibrating a pointer b tip F ptr But what is b tip ??
47
600.445; Copyright © 1999, 2000, 2001 rht+sg Calibrating a pointer b tip F ptr
48
600.445; Copyright © 1999, 2000, 2001 rht+sg Calibrating a pointer b tip F ptr b tip F ptr b tip F ptr b tip F ptr
49
600.445; Copyright © 1999, 2000, 2001 rht+sg Kinematic Links FkFk LkLk F k-1 kk
50
600.445; Copyright © 1999, 2000, 2001 rht+sg Kinematic Links Base of robot End of link k-1 End of link k
51
600.445; Copyright © 1999, 2000, 2001 rht+sg Kinematic Chains L3L3 L2L2 22 F0F0 L1L1 11 33 F1F1 F2F2 F3F3
52
600.445; Copyright © 1999, 2000, 2001 rht+sg Kinematic Chains L3L3 L2L2 22 F0F0 L1L1 11 33 F3F3
53
600.445; Copyright © 1999, 2000, 2001 rht+sg Kinematic Chains
54
600.445; Copyright © 1999, 2000, 2001 rht+sg “Small” Frame Transformations
55
600.445; Copyright © 1999, 2000, 2001 rht+sg Small Rotations
56
600.445; Copyright © 1999, 2000, 2001 rht+sg Approximations to “Small” Frames
57
600.445; Copyright © 1999, 2000, 2001 rht+sg Errors & sensitivity
58
600.445; Copyright © 1999, 2000, 2001 rht+sg x x x F = [R,p]
59
600.445; Copyright © 1999, 2000, 2001 rht+sg x x x
60
Errors & Sensitivity
61
600.445; Copyright © 1999, 2000, 2001 rht+sg Errors & Sensitivity
62
600.445; Copyright © 1999, 2000, 2001 rht+sg Digression: “rotation triple product”
63
600.445; Copyright © 1999, 2000, 2001 rht+sg Errors & Sensitivity
64
600.445; Copyright © 1999, 2000, 2001 rht+sg Errors & Sensitivity
65
600.445; Copyright © 1999, 2000, 2001 rht+sg Error Propagation in Chains FkFk LkLk F k-1 kk
66
600.445; Copyright © 1999, 2000, 2001 rht+sg Exercise L3L3 L2L2 22 F0F0 L1L1 11 33 F1F1 F2F2 F3F3
67
600.445; Copyright © 1999, 2000, 2001 rht+sg Exercise L3L3 L2L2 22 F0F0 L1L1 11 33 F1F1 F2F2 F3F3
68
600.445; Copyright © 1999, 2000, 2001 rht+sg Parametric Sensitivity
69
600.445; Copyright © 1999, 2000, 2001 rht+sg Parametric Sensitivity Grinding this out gives:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.