Download presentation
Presentation is loading. Please wait.
Published bySara Rich Modified over 9 years ago
1
Search for the Cosmic Neutrino Background and the Nuclear Beta Decay.
Amand Faessler University of Tuebingen Germany Publication: Amand Faessler, Rastislav Hodak, Sergey Kovalenko, Fedor Simkovic: arXiv: [nucl-th] 20. April 2013.
2
Cosmic Microwave Background Radiation
(Photons in the Maximum 2 mm) Decoupling of the photons from matter about years after the Big Bang, when the electrons are captured by the protons and He4 nuclei and the universe gets neutral. Photons move freely. Today: ~550 Photons /cm3 (~340 Neutrinos/cm3)
3
Planck Satellite Temperature Fluctuations Comic Microwave Background (Release March 21. 2013)
e(f) = (8ph/c3) f3df/[exp(hf/kBT)-1][Energy/Volume]
4
Neutrino Decoupling and Cosmic Neutrino Background
For massless-massive Neutrinos:
6
Estimate of Neutrino Decoupling
Universe Expansion rate: H=(da/dt)/a; a ~ 1/T; (today, Planck) H = 67km/(sec*Mpc) ~ n Interaction rate: G= ne-e+<svrelative>
7
Neutrino Decoupling G/H = ( kB T/ 1MeV)3 ~ 1
T(Neutrinos)decoupl ~ 1MeV ~ 1010 Kelvin; today: Tn = 1.95 K Time after Big Bang: 1 Second
9
(Energy=Mass)-Density of the Universe
Radiation dominated: r ~ 1/a4 ~ 𝑇4=Stefan-Boltzmann log r Matter dominated: r ~ 1/a3 ~ T3 Dark Energy a(t)~1/T 1/Temp 1 MeV 1sec n dec. 1 eV 3x104y 3000 K y g dec. 8x109 y g K n 1.95 K today
10
Mass of the Electron Neutrino? Tritium decay (Mainz + Troisk)
With: Hamburg, March
11
Measurement of the upper Limit of the Neutrino Mass in Mainz: mn < 2.2 eV 95% C.L.
Kurie-Plot Eur. Phys. J. C40 (2005) 447 mn2 <0 mn 2>0 Electron Energy Q = keV
12
Search for Cosmic Neutrino Background CnB by Beta decay: Tritium
Kurie-Plot of Beta and induced Beta Decay: n(CB) + 3H(1/2+) 3He (1/2+) + e- Infinite good resolution Q = keV Resolution Mainz: 4 eV mn < 2.3 eV Emitted electron Resolution KATRIN: eV mn < 0.2 eV 90% C. L. Electron Energy Fit parameters: mn2 and Q value meV 2xNeutrino Masses Additional fit: only intensity of CnB
13
Solution of the Nuclear Structure Problem:
Pairing Quasi-Boson Approximation
14
Neutrino Capture: n(relic) + 3H 3He + e-
20 mg(eff) of Tritium 2x1018 T2-Molecules: Nncapture(KATRIN) = 1.7x10-6 nn/<nn> [year-1] Every years a count!! for <nn> = 56 cm-3
15
Additional fit: only intensity of CnB
Two Problems Number of Events with average Neutrino Density of nne = 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in Years Gravitational Clustering of Neutrinos!!!??? 2. Energy Resolution (KATRIN) DE ~ 0.93 eV Kurie-Plot Emitted electron Resolution KATRIN: eV mn < 0.2 eV 90% C.L. Electron Energy Fit parameters: mn2 and Q value meV 2xNeutrino Masses Additional fit: only intensity of CnB
16
Gravitational Clustering of Neutrinos
R.Lazauskas,P. Vogel and C.Volpe, J. Phys.g. 35 (2008) ; Light neutrinos: Gravitate only on 50 Mpc (Galaxy Cluster) scale: nn/<nn> ~ nb/<nb> ~ 103 – 104; <nb>= cm-3 A. Ringwald and Y. Wong: Vlasov trajectory simulations. Clustering on Galactic Scale possible (30 kpc to 1 Mpc) nn/<nn> = nb/<nb> ~ 106 ; (R = 30 kpc) Nncapture(KATRIN) = 1.7x10-6 nn/<nn> (year-1)= 1.7 [counts per year] Effective Tritium Source: 20 microgram 2 milligram Nncapture(KATRIN*) = 1.7x10-4 nn/<nn> (year-1)= 170 [counts peryear]; See also: B. Monreal, J. A. Formaggio, Phys. Rev. D80 (2009) „Relativistic cyclotron radiation detection of tritium decay electrons“
17
Summary 1 The Cosmic Microwave Background allows to study the Universe
year after the BB. The Cosmic Neutrino Background 1 sec after the Big Bang (BB): Tn(today) = 1.95 Kelvin
18
THE END Summary 2 2. Measure only an upper limit of nn
Average Density: nne = 56 [ Electron-Neutrinos/cm-3] Katrin: 1 Count in Years Gravitational Clustering of Neutrinos nn/<nn> < 106 1.7 counts per year (2 milligram 3H 170 per year) 2. Measure only an upper limit of nn Kurie-Plot Electron Energy Emitted electron THE END 2xNeutrino Masses
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.