Download presentation
Presentation is loading. Please wait.
Published byPhyllis Willis Modified over 9 years ago
1
MODELING REACTIVE TRANSPORT IN NUCLEAR WASTE GEOLOGICAL DISPOSAL: 2 benchmark problems : - Glass/iron/clay interactions - Atmospheric Carbonation of concrete SES BENCH – OCT. 27 - NOV. 2 2012 O. Bildstein, P. Thouvenot, J.E. Lartigue, I. Pointeau CEA (French Alternative Energies and Atomic Energy Commission) B. Cochepin, I. Munier ANDRA (French Radioactive Waste Management Agency) 11 novembre 2015 | PAGE 1 CEA | 10 AVRIL 2012
2
DISPOSAL CONCEPT IN A CLAYSTONE FORMATION AT 500 m DEPTH Current design of deep underground repository for high and intermediate level long-lived waste S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 2
3
Just a few words about the glass/iron/clay benchmark… S.S.BENCH - November 16-18. 2011 DRD/EAP/11-0219
4
HLW DISPOSAL CELL 11 novembre 20155 th Andra International Conference - Montpellier | 22 Oct 2012 | PAGE 4 different types of material in physical contact, technological gaps long term calculations of geochemical evolution (100 000 years) Vitrified waste packages Cross section 3 cm gap steel liner disposal package 0.8 cm gap 3 cm gap scale
5
1D radial domain transport: diffusion only water saturated, constant porosity glass Φ = 0.42 m, H = 1 m porosity = 0.12 metallic components total thickness = 0,095 m, porosity = 0.25 connected fractured zone 0.4 * excavation diameter = 0.268 m porosity = 0.20; D eff (25°C) = 5.2 10 -11 m 2 /s undisturbed claystone (50 m) porosity = 0.18; D eff (25°C) = 2,6 10 -11 m 2 /s GEOMETRY AND TRANSPORT PROPERTIES 5 th Andra International Conference - Montpellier | 22 Oct 2012 | PAGE 5 - reactive-transport codes: Crunch/Hytec Isothermal conditions - H 2 (g) produced from anoxic corrosion p(H 2 )max = 60 bar
6
RESULTS IN THE BASE CASE (2) 11 novembre 20155 th Andra International Conference - Montpellier | 22 Oct 2012 | PAGE 6 Corrosion products (volume%, 45 000 yrs, end of corrosion) magnetite, Ca-siderite, and greenalite dominate (oxide) (carbonte) (silicate) also smaller amounts of aluminosilicates (nontronites and saponites) no significant changes after corrosion phase POROSITY CLOGGING modeling vs. experimental results (Schlegel at al. 2007) iron/claystone at 90°C for 1 year small amount of magnetite siderite(-Ca), Fe-silicates more phenomenological model for corrosion Canister zone 0,1 µm
7
Now to the concrete carbonation benchmark… S.S.BENCH - November 16-18. 2011 DRD/EAP/11-0219
8
DESIGN: ILLW CELLS, SHAFTS (AND SEALS), ILLW DISPOSAL OVERPACK Atmospheric carbonation of overpack during the operating period S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 8 Bitumized waste Compacted metallic waste Organic waste
9
CARBONATION ISSUE FOR RADWASTE DISPOSAL S.S.BENCH - November 16-18. 2011 Overpack carbonation pH decrease Corrosion increase Overpack cracking What about reversibility ? SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 9 Ventilation (100 years)
10
DRYING AND CARBONATION PROCESSES OF ILLW OVERPACK S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 10
11
MODELING ISSUES S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 11 CO2 gas diffusion and reactivity
12
MODELING ISSUES S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 12 benchmark emphasizes the coupling aspects CO2 gas diffusion and reactivity
13
GEOMETRY 1D Cartesian – 5.5 cm divided in 11 x 5 mm cells Boundary conditions (EOS 4) S.S.BENCH - November 16-18. 2011 Concrete Symmetry axis Dry air Wall package 110 mm SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 13
14
CASE 1 DRYING OF CONCRETE OVERPACK S.S.BENCH - November 16-18. 2011 DRD/EAP/11-0219
15
DRYING PHENOMENON (TOUGHREACT EOS4) Flow law: Generalized Darcy law Lowering of the dew point due to capillary effects (Kelvin equation in EOS 4) Water relative permeability (Van Genuchten) Gas relative permeability (Corey) Klinkenberg effect (gas flow at low pressure) S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 15
16
DRYING PHENOMENON (TOUGHREACT) Air and water gases diffusion CO2 and other gases Aqueous diffusion Effective diffusion Tortuosity S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 16
17
DRYING PHENOMENON (TOUGHREACT) Air and water gases diffusion CO2 and other gases Aqueous diffusion Effective diffusion Tortuosity S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 17
18
DRYING PHENOMENON : PARAMETERS IN REFERENCE CASE BHP CEM I S.S.BENCH - November 16-18. 2011 ROCK1 Density (kg/m 3 )2700 Porosity0.12 Intrinsic permeability to liquid (m ² ) 1e-19 Intrinsic permeability to gas (m ² ) 1e-17 Relative permeability m – Slr – Sls - Sgr 0.424 – 0.0 – 1.0 – 0.0 Capillarity pressure m – P 0 (MPa) – Pmax (MPa) 0.424 – 15 - 1500 Molecular diffusion coefficient in gaseous phase (m ² /s) 2.4e-5 Molecular diffusion coefficient in aqueous phase (m ² /s) 1.9e-9 Millington-Quirk a parameter2 Millington-Quirk b parameter4.2 Klinkenberg parameter (MPa)0.45 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 18
19
RESULTS S.S.BENCH - November 16-18. 2011 Drying results SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 19
20
RESULTS with RICHARDS’ EQUATION S.S.BENCH - November 16-18. 2011 Drying results SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 20 OK to use Richards’ equation for benchmarking exercise
21
CASE 2 CARBONATION WITH CONSTANT SATURATION S.S.BENCH - November 16-18. 2011 DRD/EAP/11-0219
22
PHENOMENOLOGY Constant saturation but unsaturated + diffusion of gas S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 22
23
CHEMICAL PARAMETERS Primary phases Secondary phases Kinetics of dissolution / precipitation Phase Volume % Calcite72.12 Portlandite5.73 CSH 1.613.76 Monocarboaluminate2.26 Ettringite3.60 Hydrotalcite0.39 Hydrogarnet-Fe (C3FH6)2.05 Phase typePhases OxidesMagnetite, Amorphous silica HydroxidesBrucite, Gibbsite, Fe(OH) 3 Sheet silicatesSepiolite Other silicatesCSH 1.2, CSH 0.8, Straetlingite, Katoite_Si Sulfates, chlorides, other saltsGypsum, Anhydrite, Burkeite, Syngenite, Glaserite, Arcanite, Glauberite, Polyhalite CarbonatesCalcite, Nahcolite OtherHydrotalcite-CO 3, Ettringite, Dawsonite
24
CHEMICAL PARAMETERS Primary and Secondary phases characteristics SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 24
25
CASE 3 FULLY COUPLED CARBONATION S.S.BENCH - November 16-18. 2011 DRD/EAP/11-0219
26
Input parameters Combination of parameters from the 2 previous cases: Flow and transport from case 1 Chemical reactions from case 2 Maximum time step: 20 s (limitation due to reactive diffusion of CO 2 ) Coupling limitations No dependence of reactivity with the saturation state No shielding effect (potential decrease of portlandite reactivity with calcite precipitation)
27
CARBONATION RESULTS pH decrease, portlandite dissolution and calcite formation over a thickness of about 2 cm after 100 years
28
CARBONATION RESULTS Dissolution of CSH 1.6, ettringite, monocarboaluminate and hydrotalcite on 2 cm after 100 years Precipitation of CSH 1.2, CSH 0.8, straetlingite, amorphous silica and gypsum on the same thickness Precipitation of small amounts of sepiolite, gibbsite and katoïte-Si is also predicted
29
CARBONATION: CPU CONCERNS… CO2 diffusion (gas phase) and reactivity are very fast! No SIA small time steps CPU times go up!
30
POSSIBLE EXTENSION: SATURATION DEPENDENT REACTIVITY Considerable reduction in the amplitude of carbonation (less dissolution of portlandite and CSH 1.6 and less precipitation of amorphous silica and other secondary CSH) Lower reactivity accompanied by a greater penetration of carbonation front due to lower consumption of CO 2 at the surface Effect of water content on reactivity (Bazant type function)
31
CONCLUSIONS Drying process of 11 cm thick waste packages depends strongly on the concrete nature and slightly on the flow model (Richards or full multiphase) Considering full multiphase model, carbonated depth is about 2 cm after 100 years for the Intermediate Performance Concrete. degraded thickness is totally carbonated (total dissolution of primary mineral phases) If we consider a chemical reactivity depending on the liquid saturation (Bazant type function), a considerable reduction in the amplitude of carbonation and a greater penetration of carbonation front are observed. Progress areas include: taking into consideration a protective effect of secondary minerals improving knowledge on kinetics parameters and thermodynamic data, especially for CSH with low Ca/Si ratio coupling this system with corrosion of rebars
32
NUMERICAL RESOURCES Carbonation during the operation period TOUGHREACT EOS 4 Few numerical implementations CEA/ANDRA Thermodynamic database S.S.BENCH - November 16-18. 2011 SeS BENCH – Taipei, Taiwan | NOV. 2012 | PAGE 32 And now: - EOS9 - Crunchflow - Hytec - … more?
33
Direction de l’Energie Nucléaire Département des Technologies Nucléaires Service de Modélisation des Transferts et de Mesures Nucléaires Commissariat à l’énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul-lez-Durance T. +33 (0)4 42 25 37 24 | F. +33 (0)4 42 25 62 72 Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019 11 novembre 2015 | PAGE 33 CEA | 10 AVRIL 2012 Acknowlegement Toughreact development team (LBNL) C. Steefel ( LBNL, Crunchflow) Hytec developement team (Mines Paristech, PGT consortium) for technical support on codes THANK YOU FOR YOUR ATTENTION
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.