Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Max 8X 1 + 5X 2 (Weekly profit) subject to 2X 1 + 1X 2  1000 (Plastic) 3X 1 + 4X 2  2400 (Production Time) X 1 + X 2  700 (Total production) X 1.

Similar presentations


Presentation on theme: "1 Max 8X 1 + 5X 2 (Weekly profit) subject to 2X 1 + 1X 2  1000 (Plastic) 3X 1 + 4X 2  2400 (Production Time) X 1 + X 2  700 (Total production) X 1."— Presentation transcript:

1

2 1 Max 8X 1 + 5X 2 (Weekly profit) subject to 2X 1 + 1X 2  1000 (Plastic) 3X 1 + 4X 2  2400 (Production Time) X 1 + X 2  700 (Total production) X 1 - X 2  350 (Mix) X j > = 0, j = 1,2 (Nonnegativity) A Prototype Example: The Galaxy Linear Programming Model

3 2 The Graphical Analysis of Linear Programming The set of all points that satisfy all the constraints of the model is called a FEASIBLE REGION

4 3 Using a graphical presentation we can represent all the constraints, the objective function, and the three types of feasible points.

5 4 The non-negativity constraints X2X2 X1X1 Graphical Analysis – the Feasible Region

6 5 1000 500 Feasible X2X2 Infeasible Production Time 3X 1 +4X 2  2400 Total production constraint: X 1 +X 2  700 (redundant) 500 700 The Plastic constraint 2X 1 +X 2  1000 X1X1 700 Graphical Analysis – the Feasible Region

7 6 1000 500 Feasible X2X2 Infeasible Production Time 3X 1 +4X2  2400 Total production constraint: X 1 +X 2  700 (redundant) 500 700 Production mix constraint: X 1 -X2  350 The Plastic constraint 2X 1 +X 2  1000 X1X1 700 Graphical Analysis – the Feasible Region There are three types of feasible points Interior points. Boundary points.Extreme points.

8 7 Solving Graphically for an Optimal Solution

9 8 The search for an optimal solution Start at some arbitrary profit, say profit = $2,000... Then increase the profit, if possible......and continue until it becomes infeasible Profit =$4360 500 700 1000 500 X2X2 X1X1

10 9 Summary of the optimal solution Summary of the optimal solution Space Rays = 320 dozen Zappers = 360 dozen Profit = $4360 –This solution utilizes all the plastic and all the production hours. –Total production is only 680 (not 700). –Space Rays production exceeds Zappers production by only 40 dozens.

11 10 –If a linear programming problem has an optimal solution, an extreme point is optimal. Main Result: Extreme points and optimal solutions

12 11 Linear programming software packages solve large linear models i.e. many decision variables and many constraints. Graphical method is limited to 2-decision variable LP problems, however, LP software packages use the Main Result of graphical method, called the Simplex algorithm. The input to any package includes: –The objective function criterion (Max or Min). –The type of each constraint:. –The actual coefficients for the problem. Computer Solution of Linear Programs With Any Number of Decision Variables


Download ppt "1 Max 8X 1 + 5X 2 (Weekly profit) subject to 2X 1 + 1X 2  1000 (Plastic) 3X 1 + 4X 2  2400 (Production Time) X 1 + X 2  700 (Total production) X 1."

Similar presentations


Ads by Google