Download presentation
Presentation is loading. Please wait.
Published byDarren Thompson Modified over 9 years ago
1
Determining the Key Features of Function Graphs
2
The Key Features of Function Graphs - Preview Domain and Range x-intercepts and y-intercepts Intervals of increasing, decreasing, and constant behavior Parent Equations Maxima and Minima
3
Domain Domain is the set of all possible input or x-values To find the domain of the graph we look at the x-axis of the graph
4
Determining Domain - Symbols Open Circle → Exclusive ( ) Closed Circle → Inclusive [ ]
5
Determining Domain 1. Start at the origin 2. Move along the x-axis until you find the lowest possible x-value. This is your lower bound. 3. Return to the origin 4. Move along the x-axis until you find your highest possible x-value. This is your upper bound.
6
Examples Domain:
7
Example Domain:
8
Determining Domain - Infinity Domain:
9
Examples Domain:
10
Your Turn: In the purple Precalculus textbooks, complete problems 3, 7, and find the domain of 9 and 10 on pg. 160 3.7. 9.10.
11
Range The set of all possible output or y- values To find the range of the graph we look at the y-axis of the graph We also use open and closed circles for the range
12
Determining Range Start at the origin Move along the y-axis until you find the lowest possible y-value. This is your lower bound. Return to the origin Move along the y-axis until you find your highest possible y-value. This is your upper bound.
13
Examples Range:
14
Examples Range:
15
Your Turn: In the purple Precalculus textbooks, complete problems 4, 8, and find the range of 9 and 10 on pg. 160 4.8. 9.10.
16
X-Intercepts Where the graph crosses the x-axis Has many names: x-intercept Roots Zeros
17
Examples x-intercepts:
18
Y-Intercepts Where the graph crosses the y-axis y-intercepts:
19
Seek and Solve!!!
20
Types of Function Behavior 3 types: Increasing Decreasing Constant When determining the type of behavior, we always move from left to right on the graph
21
Roller Coasters!!! Fujiyama in Japan
22
Types of Behavior – Increasing As x increases, y also increases Direct Relationship
23
Types of Behavior – Constant As x increases, y stays the same
24
Types of Behavior – Decreasing As x increases, y decreases Inverse Relationship
25
Identifying Intervals of Behavior We use interval notation The interval measures x-values. The type of behavior describes y-values. Increasing: [0, 4) The y-values are increasing when the x-values are between 0 inclusive and 4 exclusive
26
Identifying Intervals of Behavior Increasing: Constant: Decreasing: x 1 1 y
27
Identifying Intervals of Behavior, cont. Increasing: Constant: Decreasing: -3 y x Don’t get distracted by the arrows! Even though both of the arrows point “up”, the graph isn’t increasing at both ends of the graph!
28
Your Turn: Complete problems 1 – 4 on The Key Features of Function Graphs – Part II handout.
29
1. 2. 3. 4.
30
What do you think of when you hear the word parent?
31
Parent Function Flipbook
32
Parent Function The most basic form of a type of function Determines the general shape of the graph
33
Basic Types of Parent Functions 1. Linear 2. Absolute Value 3. Greatest Integer 4. Quadratic 5. Cubic 6. Square Root 7. Cube Root 8. Reciprocal
34
Function Name: Linear Parent Function: f(x) = x “Baby” Functions: y x2 2
35
Greatest Integer Function f(x) = [[x]] f(x) = int(x) Rounding function Always round down
36
“Baby” Functions Look and behave similarly to their parent functions To get a “baby” functions, add, subtract, multiply, and/or divide parent equations by (generally) constants f(x) = x 2 f(x) = 5x 2 – 14 f(x) = f(x) = f(x) = x 3 f(x) = -2x 3 + 4x 2 – x + 2
37
“Baby” Functions, cont. f(x) = |x|
38
Your Turn: Create your own “baby” functions in your parent functions book.
39
Identifying Parent Functions From Equations: Identify the most important operation 1. Special Operation (absolute value, greatest integer) 2. Division by x 3. Highest Exponent (this includes square roots and cube roots)
40
Examples 1. f(x) = x 3 + 4x – 3 2. f(x) = -2| x | + 11 3.
41
Identifying Parent Equations From Graphs: Try to match graphs to the closest parent function graph
42
Examples
43
Your Turn: Complete problems 5 – 12 on The Key Features of Function Graphs handout
44
Maximum (Maxima) and Minimum (Minima) Points Peaks (or hills) are your maximum points Valleys are your minimum points
45
Identifying Minimum and Maximum Points Write the answers as points You can have any combination of min and max points Minimum: Maximum:
46
Examples
47
Your Turn: Complete problems 1 – 6 on The Key Features of Function Graphs – Part III handout.
48
1. 2. 3. 4. 5. 6.
49
Reminder: Find f(#) and Find f(x) = x Find f(#) Find the value of f(x) when x equals #. Solve for f(x) or y! Find f(x) = # Find the value of x when f(x) equals #. Solve for x!
50
Evaluating Graphs of Functions – Find f(#) 1. Draw a (vertical) line at x = # 2. The intersection points are points where the graph = f(#) f(1) = f(–2) =
51
Evaluating Graphs of Functions – Find f(x) = # 1. Draw a (horizontal) line at y = # 2. The intersection points are points where the graph is f(x) = # f(x) = –2 f(x) = 2
52
Example 1. Find f(1) 2. Find f(–0.5) 3. Find f(x) = 0 4. Find f(x) = –5
53
Your Turn: Complete Parts A – D for problems 7 – 14 on The Key Features of Function Graphs – Part III handout.
54
7. 8. 9. 10.
55
11. 12. 13. 14.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.