Download presentation
Presentation is loading. Please wait.
1
Properties from Algebra
Section 2-2: Properties from Algebra
2
a + c = b + d Ex: If x = 12, then x + 2 = 14.
Properties of Equality Addition Property If a = b and c = d, then _________________________. Subtraction Property If a = b and c = d, then __________________________. Multiplication Property If a = b, then _________________________________. Division Property If a = b and c ≠ 0, then ________________________. a + c = b + d Ex: If x = 12, then x + 2 = 14. If x – 3 = 7, then x = 10. a – c = b – d Ex: If x + 2 = 9, then x = 7. ca = cb Ex: If 𝑥 3 = 9, then x = 27. 𝑎 𝑐 = 𝑏 𝑐 Ex: If 4x = 28, then x = 7.
3
Substitution Property If a = b, then either a or b may be ____________ for the other in any equation (or inequality). substituted Ex: If m∠A = 30° and m∠A = m∠C, then m∠C = 30°. Ex: If 2x + 3 = y and x = 5, then 13 = y. Ex: If x = y and z = y, then x = z.
4
Reflexive Property a = _____ Symmetric Property If a = b, then ____________________. Transitive Property If a = b and b = c, then _____________. a Ex: If m∠A, then m∠A. b = a Ex: If AB = CD, then CD = AB. a = c Ex: If m∠A = m∠B and m∠B = m∠C, then m∠A = m∠C.
5
𝐷𝐸 ∠D 𝐹𝐺 ≅ 𝐷𝐸 ∠E ≅ ∠D 𝐷𝐸 ≅ 𝐽𝐾 ∠D ≅ ∠F
Properties of Congruence Reflexive Property 𝐷𝐸 ≅ ________ ∠D ≅ _________ Symmetric Property If 𝐷𝐸 ≅ 𝐹𝐺 , then _____________________________. If ∠D ≅ ∠E, then ______________________________. Transitive Property If 𝐷𝐸 ≅ 𝐹𝐺 and 𝐹𝐺 ≅ 𝐽𝐾 , then _______________. If ∠D ≅∠E and ∠E ≅∠F, then _________________. 𝐷𝐸 ∠D 𝐹𝐺 ≅ 𝐷𝐸 ∠E ≅ ∠D 𝐷𝐸 ≅ 𝐽𝐾 ∠D ≅ ∠F
6
Properties of Real Numbers
Commutative Property a + b = __________, ab = _______ Associative Property a + (b + c) = _________, a(bc) = ________ Distributive Property a(b + c) = __________ b + a ba (a + b) + c (ab)c ab + ac
7
Examples: Justify each step with a “Property from Algebra.” Follow the example below: Given: 4x – 5 = –2 Prove: x = 3 4 Statements Reasons 1. 4x – 5 = – Given 2. 4x = Addition Property of Equality 3. x = Division Property of Equality
8
Multiplication Property of Equality
1. Given: 3𝑎 2 = 6 5 Prove: a = 4 5 Statements Reasons 1. 3𝑎 2 = Given 2. 3a = 3. a = Multiplication Property of Equality Division Property of Equality
9
2. Given: 𝑧+7 3 = –11 Prove: z = –40 Statements Reasons 1
2. Given: 𝑧+7 3 = –11 Prove: z = –40 Statements Reasons 1. 𝑧+7 3 = –11 1. Given 2. z + 7 = – z = –40 3. Multiplication Property of Equality Subtraction Property of Equality
10
Addition Property of Equality
3. Given: 15y + 7 = 12 – 20y Prove: y = 1 7 Statements Reasons 1. 15y + 7 = 12 – 20y 1. Given 2. 35y + 7 = y = y = Addition Property of Equality Subtraction Property of Equality Division Property of Equality
11
Multiplication Property of Equality
4. Given: x – 2 = 2𝑥+8 5 Prove: x = 6 Statements Reasons 1. x – 2 = 2𝑥 Given 2. 5(x – 2) = 2x x – 10 = 2x x – 10 = x = x = 6 6. Multiplication Property of Equality Distributive Property Subtraction Property of Equality Addition Property of Equality Division Property of Equality
12
Substitution Property Practice
1. a = b + c Given d = e + f 2. a = d Given 3. ____________ 3. Substitution b + c = e + f
13
II. 1. a = b + c Given d = e + f 2. b + c = e + f Given 3. _____________ 3. Substitution a = d
14
(Diagram is for III. And IV.) III. 1. DF = AC 1. Given
1. DF = AC 1. Given 2. DE + EF = ____ 2. ____________ AB + BC = ____ ____________ 3. ____________ 3. Substitution • • • D E F • • • A B C DF Segment AC Addition Post. DE + EF = AB + BC
15
IV. 1. DE + EF = AB + BC 1. Given 2. DE + EF = _____ 2
IV. 1. DE + EF = AB + BC 1. Given 2. DE + EF = _____ 2. ______________ AB + BC = _____ ______________ 3. _____________ 3. Substitution DF Segment AC Addition Post. DF = AC
16
m∠WOY = m∠1 + m∠2 2. _____________ m∠XOZ = m∠3 + m∠2 _____________
V. 1. ∠WOY ∠XOZ 1. Given m∠WOY = m∠1 + m∠2 2. _____________ m∠XOZ = m∠3 + m∠ _____________ 3. ________________ 3. Substitution ________________ Angle Addition Post. m∠1 + m∠2 = m∠3 + m∠2 W • X • Y • 1 2 3 • • O Z
17
CLASSWORK: page 41 #1-8 all
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.