Download presentation
Presentation is loading. Please wait.
Published byKristin Carr Modified over 9 years ago
1
1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology
2
H.-H. S. Lee 2 Quine-McCluskey Method A systematic solution to K-Map when more complex function with more literals is given B n n In principle, can be applied to an arbitrary large number of inputs, i.e. works for B n where n can be arbitrarily large One can translate Quine-McCluskey method into a computer program to perform minimization
3
H.-H. S. Lee 3 Quine-McCluskey Method Two basic steps Finding all prime implicants of a given Boolean function Select a minimal set of prime implicants that cover this function
4
H.-H. S. Lee 4 Q-M Method (I) Transform the given Boolean function into a canonical SOP function Convert each Minterm into binary format Arrange each binary minterm in groups All the minterms in one group contain the same number of “1”
5
H.-H. S. Lee 5 Q-M Method: Grouping minterms (29) 1 1 1 0 1 (30) 1 1 1 1 0 (2) 0 0 0 1 0 (4) 0 0 1 0 0 (8) 0 1 0 0 0 (16) 1 0 0 0 0 A B C D E (0) 0 0 0 0 0 (6) 0 0 1 1 0 (10) 0 1 0 1 0 (12) 0 1 1 0 0 (18) 1 0 0 1 0 (7) 0 0 1 1 1 (11) 0 1 0 1 1 (13) 0 1 1 0 1 (14) 0 1 1 1 0 (19) 1 0 0 1 1
6
H.-H. S. Lee 6 Q-M Method (II) Combine terms with Hamming distance=1 from adjacent groups Check ( ) the terms being combined The checked terms are “covered” by the combined new term Keep doing this till no combination is possible between adjacent groups
7
H.-H. S. Lee 7 Q-M Method: Grouping minterms (29) 1 1 1 0 1 (30) 1 1 1 1 0 (2) 0 0 0 1 0 (4) 0 0 1 0 0 (8) 0 1 0 0 0 (16) 1 0 0 0 0 A B C D E (0) 0 0 0 0 0 (6) 0 0 1 1 0 (10) 0 1 0 1 0 (12) 0 1 1 0 0 (18) 1 0 0 1 0 (7) 0 0 1 1 1 (11) 0 1 0 1 1 (13) 0 1 1 0 1 (14) 0 1 1 1 0 (19) 1 0 0 1 1 A B C D E (0,2) 0 0 0 – 0 (0,4) 0 0 - 0 0 (0,8) 0 - 0 0 0 (0,16) - 0 0 0 0 (2,6) 0 0 - 1 0 (2,10) 0 - 0 1 0 (2,18) - 0 0 1 0 (4,6) 0 0 1 - 0 (4,12) 0 - 1 0 0 (8,10) 0 1 0 - 0 (8,12) 0 1 - 0 0 (16,18) 1 0 0 - 0 (6,7) 0 0 1 1 - (6,14) 0 - 1 1 0 (10,11) 0 1 0 1 - (10,14) 0 1 - 1 0 (12,13) 0 1 1 0 - (12,14) 0 1 1 - 0 (18,19) 1 0 0 1 - A B C D E (13,29) - 1 1 0 1 (14,30) - 1 1 1 0
8
H.-H. S. Lee 8 Q-M Method: Grouping minterms A B C D E (0,2) 0 0 0 – 0 (0,4) 0 0 - 0 0 (0,8) 0 - 0 0 0 (0,16) - 0 0 0 0 (2,6) 0 0 - 1 0 (2,10) 0 - 0 1 0 (2,18) - 0 0 1 0 (4,6) 0 0 1 - 0 (4,12) 0 - 1 0 0 (8,10) 0 1 0 - 0 (8,12) 0 1 - 0 0 (16,18) 1 0 0 - 0 (6,7) 0 0 1 1 - (6,14) 0 - 1 1 0 (10,11) 0 1 0 1 - (10,14) 0 1 - 1 0 (12,13) 0 1 1 0 - (12,14) 0 1 1 - 0 (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 A B C D E (0,2,4,6) 0 0 - – 0 (0,2,8,10) 0 - 0 – 0 (0,2,16,18) - 0 0 – 0 (0,4,8,12) 0 - - 0 0 (2,6,10,14) 0 - - 1 0 (4,6,12,14) 0 - 1 - 0 (8,10,12,14) 0 1 - - 0 A B C D E (0,2,4,6 0 - - - 0 8,10,12,14)
9
H.-H. S. Lee 9 Prime Implicants (6,7) 0 0 1 1 - (10,11) 0 1 0 1 - (12,13) 0 1 1 0 - (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 (0,2,16,18) - 0 0 – 0 (0,2,4,6 0 - - - 0 8,10,12,14) A B C D E Unchecked terms are prime implicants
10
H.-H. S. Lee 10 Prime Implicants (6,7) 0 0 1 1 - (10,11) 0 1 0 1 - (12,13) 0 1 1 0 - (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 (0,2,16,18) - 0 0 – 0 (0,2,4,6 0 - - - 0 8,10,12,14) A B C D E Unchecked terms are prime implicants
11
H.-H. S. Lee 11 Q-M Method (III) Form a Prime Implicant Table X-axis: the minterm Y-axis: prime implicants An is placed at the intersection of a row and column if the corresponding prime implicant includes the corresponding product (term)
12
H.-H. S. Lee 12 Q-M Method: Prime Implicant Table 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX
13
H.-H. S. Lee 13 Q-M Method (IV) Locate the essential row from the table These are essential prime implicants The row consists of minterms covered by a single “ ” Mark all minterms covered by the essential prime implicants Find non-essential prime implicants to cover the rest of minterms Form the SOP function with the prime implicants selected, which is the minimal representation
14
H.-H. S. Lee 14 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX
15
H.-H. S. Lee 15 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14)
16
H.-H. S. Lee 16 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14)
17
H.-H. S. Lee 17 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7)
18
H.-H. S. Lee 18 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7)
19
H.-H. S. Lee 19 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11)
20
H.-H. S. Lee 20 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11)
21
H.-H. S. Lee 21 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)
22
H.-H. S. Lee 22 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)
23
H.-H. S. Lee 23 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)
24
H.-H. S. Lee 24 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)
25
H.-H. S. Lee 25 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)
26
H.-H. S. Lee 26 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)
27
H.-H. S. Lee 27 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) Now all the minterms are covered by selected prime implicants !
28
H.-H. S. Lee 28 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) Now all the minterms are covered by selected prime implicants ! Note that (12,13), a non-essential prime implicant, is not needed
29
H.-H. S. Lee 29 Q-M Method Result 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX
30
H.-H. S. Lee 30 Q-M Method Example 2 Sometimes, simplification by K-map method could be less than optimal due to human error Quine-McCluskey method can guarantee an optimal answer 00011110 00 1100 01 1XX1 11 100X 10 1101 AB CD
31
H.-H. S. Lee 31 Grouping minterms (1) 0 0 0 1 (4) 0 1 0 0 (8) 1 0 0 0 A B C D (0) 0 0 0 0 (5) 0 1 0 1 (6) 0 1 1 0 (9) 1 0 0 1 (10) 1 0 1 0 (12) 1 1 0 0 (7) 0 1 1 1 (14) 1 1 1 0 A B C D (0,1) 0 0 0 - (0,4) 0 - 0 0 (0,8) - 0 0 0 (1,5) 0 - 0 1 (1,9) - 0 0 1 (4,5) 0 1 0 – (4,6) 0 1 – 0 (4,12) – 1 0 0 (8,9) 1 0 0 – (8,10) 1 0 – 0 (8,12) 1 – 0 0 (5,7) 0 1 - 1 (6,7) 0 1 1 - (6,14) - 1 1 0 (10,14) 1 – 1 0 (12,14) 1 1 - 0 A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0
32
H.-H. S. Lee 32 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care
33
H.-H. S. Lee 33 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care
34
H.-H. S. Lee 34 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care
35
H.-H. S. Lee 35 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care
36
H.-H. S. Lee 36 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care
37
H.-H. S. Lee 37 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care Essential PI Non-Essential PI
38
H.-H. S. Lee 38 Q-M Method Solution 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 Don’t Care
39
H.-H. S. Lee 39 Yet Another Q-M Method Solution 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 Don’t Care
40
H.-H. S. Lee 40 To Get the Same Answer w/ K-Map 00011110 00 1100 01 1XX1 11 100X 10 1101 AB CD 00011110 00 1100 01 1XX1 11 100X 10 1101 AB CD
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.