Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology.

Similar presentations


Presentation on theme: "1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology."— Presentation transcript:

1 1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology

2 H.-H. S. Lee 2 Quine-McCluskey Method A systematic solution to K-Map when more complex function with more literals is given B n n In principle, can be applied to an arbitrary large number of inputs, i.e. works for B n where n can be arbitrarily large One can translate Quine-McCluskey method into a computer program to perform minimization

3 H.-H. S. Lee 3 Quine-McCluskey Method Two basic steps Finding all prime implicants of a given Boolean function Select a minimal set of prime implicants that cover this function

4 H.-H. S. Lee 4 Q-M Method (I) Transform the given Boolean function into a canonical SOP function Convert each Minterm into binary format Arrange each binary minterm in groups All the minterms in one group contain the same number of “1”

5 H.-H. S. Lee 5 Q-M Method: Grouping minterms (29) 1 1 1 0 1 (30) 1 1 1 1 0 (2) 0 0 0 1 0 (4) 0 0 1 0 0 (8) 0 1 0 0 0 (16) 1 0 0 0 0 A B C D E (0) 0 0 0 0 0 (6) 0 0 1 1 0 (10) 0 1 0 1 0 (12) 0 1 1 0 0 (18) 1 0 0 1 0 (7) 0 0 1 1 1 (11) 0 1 0 1 1 (13) 0 1 1 0 1 (14) 0 1 1 1 0 (19) 1 0 0 1 1

6 H.-H. S. Lee 6 Q-M Method (II) Combine terms with Hamming distance=1 from adjacent groups  Check (  ) the terms being combined The checked terms are “covered” by the combined new term Keep doing this till no combination is possible between adjacent groups

7 H.-H. S. Lee 7 Q-M Method: Grouping minterms (29) 1 1 1 0 1 (30) 1 1 1 1 0 (2) 0 0 0 1 0 (4) 0 0 1 0 0 (8) 0 1 0 0 0 (16) 1 0 0 0 0 A B C D E (0) 0 0 0 0 0 (6) 0 0 1 1 0 (10) 0 1 0 1 0 (12) 0 1 1 0 0 (18) 1 0 0 1 0 (7) 0 0 1 1 1 (11) 0 1 0 1 1 (13) 0 1 1 0 1 (14) 0 1 1 1 0 (19) 1 0 0 1 1 A B C D E   (0,2) 0 0 0 – 0  (0,4) 0 0 - 0 0  (0,8) 0 - 0 0 0  (0,16) - 0 0 0 0  (2,6) 0 0 - 1 0  (2,10) 0 - 0 1 0  (2,18) - 0 0 1 0  (4,6) 0 0 1 - 0 (4,12) 0 - 1 0 0 (8,10) 0 1 0 - 0 (8,12) 0 1 - 0 0 (16,18) 1 0 0 - 0 (6,7) 0 0 1 1 -  (6,14) 0 - 1 1 0  (10,11) 0 1 0 1 -  (10,14) 0 1 - 1 0 (12,13) 0 1 1 0 -  (12,14) 0 1 1 - 0 (18,19) 1 0 0 1 -  A B C D E (13,29) - 1 1 0 1  (14,30) - 1 1 1 0 

8 H.-H. S. Lee 8 Q-M Method: Grouping minterms A B C D E   (0,2) 0 0 0 – 0  (0,4) 0 0 - 0 0 (0,8) 0 - 0 0 0  (0,16) - 0 0 0 0  (2,6) 0 0 - 1 0  (2,10) 0 - 0 1 0  (2,18) - 0 0 1 0 (4,6) 0 0 1 - 0 (4,12) 0 - 1 0 0 (8,10) 0 1 0 - 0 (8,12) 0 1 - 0 0 (16,18) 1 0 0 - 0 (6,7) 0 0 1 1 - (6,14) 0 - 1 1 0 (10,11) 0 1 0 1 - (10,14) 0 1 - 1 0 (12,13) 0 1 1 0 - (12,14) 0 1 1 - 0 (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 A B C D E (0,2,4,6) 0 0 - – 0  (0,2,8,10) 0 - 0 – 0  (0,2,16,18) - 0 0 – 0  (0,4,8,12) 0 - - 0 0   (2,6,10,14) 0 - - 1 0  (4,6,12,14) 0 - 1 - 0  (8,10,12,14) 0 1 - - 0  A B C D E (0,2,4,6 0 - - - 0 8,10,12,14)      

9 H.-H. S. Lee 9 Prime Implicants (6,7) 0 0 1 1 - (10,11) 0 1 0 1 - (12,13) 0 1 1 0 - (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 (0,2,16,18) - 0 0 – 0 (0,2,4,6 0 - - - 0 8,10,12,14) A B C D E Unchecked terms are prime implicants

10 H.-H. S. Lee 10 Prime Implicants (6,7) 0 0 1 1 - (10,11) 0 1 0 1 - (12,13) 0 1 1 0 - (18,19) 1 0 0 1 - (13,29) - 1 1 0 1 (14,30) - 1 1 1 0 (0,2,16,18) - 0 0 – 0 (0,2,4,6 0 - - - 0 8,10,12,14) A B C D E Unchecked terms are prime implicants

11 H.-H. S. Lee 11 Q-M Method (III) Form a Prime Implicant Table X-axis: the minterm Y-axis: prime implicants  An  is placed at the intersection of a row and column if the corresponding prime implicant includes the corresponding product (term)

12 H.-H. S. Lee 12 Q-M Method: Prime Implicant Table 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX

13 H.-H. S. Lee 13 Q-M Method (IV) Locate the essential row from the table These are essential prime implicants The row consists of minterms covered by a single “  ” Mark all minterms covered by the essential prime implicants Find non-essential prime implicants to cover the rest of minterms Form the SOP function with the prime implicants selected, which is the minimal representation

14 H.-H. S. Lee 14 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX

15 H.-H. S. Lee 15 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14)

16 H.-H. S. Lee 16 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14)

17 H.-H. S. Lee 17 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7)

18 H.-H. S. Lee 18 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7)

19 H.-H. S. Lee 19 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11)

20 H.-H. S. Lee 20 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11)

21 H.-H. S. Lee 21 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)

22 H.-H. S. Lee 22 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18)

23 H.-H. S. Lee 23 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)

24 H.-H. S. Lee 24 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19)

25 H.-H. S. Lee 25 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)

26 H.-H. S. Lee 26 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29)

27 H.-H. S. Lee 27 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) Now all the minterms are covered by selected prime implicants !

28 H.-H. S. Lee 28 Q-M Method 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX Select (0,2,4,6,8,10,12,14), (6,7), (10,11), (0,2,16,18), (18,19), (13,29), (14,30) Now all the minterms are covered by selected prime implicants ! Note that (12,13), a non-essential prime implicant, is not needed

29 H.-H. S. Lee 29 Q-M Method Result 02467810111213141618192930 (6,7)XX (10,11)XX (12,13)XX (18,19)XX (13,29)XX (14,30)XX (0,2,16,18)XXXX (0,2,4,6,8,10,12,14)XXXXXXXX

30 H.-H. S. Lee 30 Q-M Method Example 2 Sometimes, simplification by K-map method could be less than optimal due to human error Quine-McCluskey method can guarantee an optimal answer 00011110 00 1100 01 1XX1 11 100X 10 1101 AB CD

31 H.-H. S. Lee 31 Grouping minterms (1) 0 0 0 1 (4) 0 1 0 0 (8) 1 0 0 0 A B C D (0) 0 0 0 0 (5) 0 1 0 1 (6) 0 1 1 0 (9) 1 0 0 1 (10) 1 0 1 0 (12) 1 1 0 0 (7) 0 1 1 1 (14) 1 1 1 0 A B C D (0,1) 0 0 0 - (0,4) 0 - 0 0 (0,8) - 0 0 0     (1,5) 0 - 0 1 (1,9) - 0 0 1 (4,5) 0 1 0 – (4,6) 0 1 – 0 (4,12) – 1 0 0 (8,9) 1 0 0 – (8,10) 1 0 – 0 (8,12) 1 – 0 0      (5,7) 0 1 - 1 (6,7) 0 1 1 - (6,14) - 1 1 0 (10,14) 1 – 1 0 (12,14) 1 1 - 0   A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0        (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0         

32 H.-H. S. Lee 32 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

33 H.-H. S. Lee 33 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

34 H.-H. S. Lee 34 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

35 H.-H. S. Lee 35 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

36 H.-H. S. Lee 36 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care

37 H.-H. S. Lee 37 Prime Implicants A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX Don’t Care Essential PI Non-Essential PI

38 H.-H. S. Lee 38 Q-M Method Solution 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 Don’t Care

39 H.-H. S. Lee 39 Yet Another Q-M Method Solution 01468910125714 (0,1,4,5)XXXX (0,1,8,9)XXXX (0,4,8,12)XXXX (4,5,6,7)XXXX (4,6,12,14)XXXX (8,10,12,14)XXXX A B C D (4,5,6,7) 0 1 - - (4,6,12,14) - 1 - 0 (8,10,12,14) 1 - - 0 (0,1,4,5) 0 - 0 - (0,1,8,9) - 0 0 – (0,4,8,12) - - 0 0 Don’t Care

40 H.-H. S. Lee 40 To Get the Same Answer w/ K-Map 00011110 00 1100 01 1XX1 11 100X 10 1101 AB CD 00011110 00 1100 01 1XX1 11 100X 10 1101 AB CD


Download ppt "1 ECE2030 Introduction to Computer Engineering Lecture 8: Quine-McCluskey Method Prof. Hsien-Hsin Sean Lee School of ECE Georgia Institute of Technology."

Similar presentations


Ads by Google