Download presentation
Presentation is loading. Please wait.
Published byNaomi Hall Modified over 9 years ago
1
Sorting Techniques Rizwan Rehman Centre for Computer Studies Dibrugarh University
2
Bubble Sort
3
Sorting Sorting takes an unordered collection and makes it an ordered one. 5 12 3542 77 101 1 2 3 4 5 6 5 12 35 42 77101 1 2 3 4 5 6
4
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3542 77 101 1 2 3 4 5 6
5
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3542 77 101 1 2 3 4 5 6 Swap 4277
6
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 3577 42 101 1 2 3 4 5 6 Swap 3577
7
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 12 7735 42 101 1 2 3 4 5 6 Swap 1277
8
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 77 1235 42 101 1 2 3 4 5 6 No need to swap
9
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 5 77 1235 42 101 1 2 3 4 5 6 Swap 5101
10
"Bubbling Up" the Largest Element Traverse a collection of elements –Move from the front to the end –“Bubble” the largest value to the end using pair-wise comparisons and swapping 77 1235 42 5 1 2 3 4 5 6 101 Largest value correctly placed
11
The “Bubble Up” Algorithm index <- 1 last_compare_at <- n – 1 loop exitif(index > last_compare_at) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop
12
No, Swap isn’t built in. Procedure Swap(a, b isoftype in/out Num) t isoftype Num t <- a a <- b b <- t endprocedure // Swap LB
13
Items of Interest Notice that only the largest value is correctly placed All other values are still out of order So we need to repeat this process 77 1235 42 5 1 2 3 4 5 6 101 Largest value correctly placed
14
Repeat “Bubble Up” How Many Times? If we have N elements… And if each time we bubble an element, we place it in its correct location… Then we repeat the “bubble up” process N – 1 times. This guarantees we’ll correctly place all N elements.
15
“Bubbling” All the Elements 77 1235 42 5 1 2 3 4 5 6 101 5 4212 35 77 1 2 3 4 5 6 10142 5 35 12 77 1 2 3 4 5 6 10142 35 5 12 77 1 2 3 4 5 6 10142 35 12 5 77 1 2 3 4 5 6 101 N - 1
16
Reducing the Number of Comparisons 12 35 42 77 101 1 2 3 4 5 6 577 1235 42 5 1 2 3 4 5 6 101 5 4212 35 77 1 2 3 4 5 6 10142 5 35 12 77 1 2 3 4 5 6 10142 35 5 12 77 1 2 3 4 5 6 101
17
Reducing the Number of Comparisons On the N th “bubble up”, we only need to do MAX-N comparisons. For example: –This is the 4 th “bubble up” –MAX is 6 –Thus we have 2 comparisons to do 42 5 35 12 77 1 2 3 4 5 6 101
18
Putting It All Together
19
N is … // Size of Array Arr_Type definesa Array[1..N] of Num Procedure Swap(n1, n2 isoftype in/out Num) temp isoftype Num temp <- n1 n1 <- n2 n2 <- temp endprocedure // Swap
20
procedure Bubblesort(A isoftype in/out Arr_Type) to_do, index isoftype Num to_do <- N – 1 loop exitif(to_do = 0) index <- 1 loop exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) endif index <- index + 1 endloop to_do <- to_do - 1 endloop endprocedure // Bubblesort Inner loop Outer loop
21
Already Sorted Collections? What if the collection was already sorted? What if only a few elements were out of place and after a couple of “bubble ups,” the collection was sorted? We want to be able to detect this and “stop early”! 42 35 12 5 77 1 2 3 4 5 6 101
22
Using a Boolean “Flag” We can use a boolean variable to determine if any swapping occurred during the “bubble up.” If no swapping occurred, then we know that the collection is already sorted! This boolean “flag” needs to be reset after each “bubble up.”
23
did_swap isoftype Boolean did_swap <- true loop exitif ((to_do = 0) OR NOT(did_swap)) index <- 1 did_swap <- false loop exitif(index > to_do) if(A[index] > A[index + 1]) then Swap(A[index], A[index + 1]) did_swap <- true endif index <- index + 1 endloop to_do <- to_do - 1 endloop
24
An Animated Example 674523146339842 1 2 3 4 5 6 7 8 to_do index 7 N 8 did_swap true
25
An Animated Example 674523146339842 1 2 3 4 5 6 7 8 to_do index 7 1 N 8 did_swap false
26
An Animated Example 674523146339842 1 2 3 4 5 6 7 8 to_do index 7 1 N 8 Swap did_swap false
27
An Animated Example 674598146332342 1 2 3 4 5 6 7 8 to_do index 7 1 N 8 Swap did_swap true
28
An Animated Example 674598146332342 1 2 3 4 5 6 7 8 to_do index 7 2 N 8 did_swap true
29
An Animated Example 674598146332342 1 2 3 4 5 6 7 8 to_do index 7 2 N 8 Swap did_swap true
30
An Animated Example 679845146332342 1 2 3 4 5 6 7 8 to_do index 7 2 N 8 Swap did_swap true
31
An Animated Example 679845146332342 1 2 3 4 5 6 7 8 to_do index 7 3 N 8 did_swap true
32
An Animated Example 679845146332342 1 2 3 4 5 6 7 8 to_do index 7 3 N 8 Swap did_swap true
33
An Animated Example 671445986332342 1 2 3 4 5 6 7 8 to_do index 7 3 N 8 Swap did_swap true
34
An Animated Example 671445986332342 1 2 3 4 5 6 7 8 to_do index 7 4 N 8 did_swap true
35
An Animated Example 671445986332342 1 2 3 4 5 6 7 8 to_do index 7 4 N 8 Swap did_swap true
36
An Animated Example 671445698332342 1 2 3 4 5 6 7 8 to_do index 7 4 N 8 Swap did_swap true
37
An Animated Example 671445698332342 1 2 3 4 5 6 7 8 to_do index 7 5 N 8 did_swap true
38
An Animated Example 671445698332342 1 2 3 4 5 6 7 8 to_do index 7 5 N 8 Swap did_swap true
39
An Animated Example 981445667332342 1 2 3 4 5 6 7 8 to_do index 7 5 N 8 Swap did_swap true
40
An Animated Example 981445667332342 1 2 3 4 5 6 7 8 to_do index 7 6 N 8 did_swap true
41
An Animated Example 981445667332342 1 2 3 4 5 6 7 8 to_do index 7 6 N 8 Swap did_swap true
42
An Animated Example 331445667982342 1 2 3 4 5 6 7 8 to_do index 7 6 N 8 Swap did_swap true
43
An Animated Example 331445667982342 1 2 3 4 5 6 7 8 to_do index 7 7 N 8 did_swap true
44
An Animated Example 331445667982342 1 2 3 4 5 6 7 8 to_do index 7 7 N 8 Swap did_swap true
45
An Animated Example 331445667422398 1 2 3 4 5 6 7 8 to_do index 7 7 N 8 Swap did_swap true
46
After First Pass of Outer Loop 331445667422398 1 2 3 4 5 6 7 8 to_do index 7 8 N 8 Finished first “Bubble Up” did_swap true
47
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 1 N 8 did_swap false
48
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 1 N 8 did_swap false No Swap
49
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 2 N 8 did_swap false
50
The Second “Bubble Up” 331445667422398 1 2 3 4 5 6 7 8 to_do index 6 2 N 8 did_swap false Swap
51
The Second “Bubble Up” 334514667422398 1 2 3 4 5 6 7 8 to_do index 6 2 N 8 did_swap true Swap
52
The Second “Bubble Up” 334514667422398 1 2 3 4 5 6 7 8 to_do index 6 3 N 8 did_swap true
53
The Second “Bubble Up” 334514667422398 1 2 3 4 5 6 7 8 to_do index 6 3 N 8 did_swap true Swap
54
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 3 N 8 did_swap true Swap
55
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 4 N 8 did_swap true
56
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 4 N 8 did_swap true No Swap
57
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 5 N 8 did_swap true
58
The Second “Bubble Up” 336144567422398 1 2 3 4 5 6 7 8 to_do index 6 5 N 8 did_swap true Swap
59
The Second “Bubble Up” 676144533422398 1 2 3 4 5 6 7 8 to_do index 6 5 N 8 did_swap true Swap
60
The Second “Bubble Up” 676144533422398 1 2 3 4 5 6 7 8 to_do index 6 6 N 8 did_swap true
61
The Second “Bubble Up” 676144533422398 1 2 3 4 5 6 7 8 to_do index 6 6 N 8 did_swap true Swap
62
The Second “Bubble Up” 426144533672398 1 2 3 4 5 6 7 8 to_do index 6 6 N 8 did_swap true Swap
63
After Second Pass of Outer Loop 426144533672398 1 2 3 4 5 6 7 8 to_do index 6 7 N 8 did_swap true Finished second “Bubble Up”
64
The Third “Bubble Up” 426144533672398 1 2 3 4 5 6 7 8 to_do index 5 1 N 8 did_swap false
65
The Third “Bubble Up” 426144533672398 1 2 3 4 5 6 7 8 to_do index 5 1 N 8 did_swap false Swap
66
The Third “Bubble Up” 426234533671498 1 2 3 4 5 6 7 8 to_do index 5 1 N 8 did_swap true Swap
67
The Third “Bubble Up” 426234533671498 1 2 3 4 5 6 7 8 to_do index 5 2 N 8 did_swap true
68
The Third “Bubble Up” 426234533671498 1 2 3 4 5 6 7 8 to_do index 5 2 N 8 did_swap true Swap
69
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 2 N 8 did_swap true Swap
70
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 3 N 8 did_swap true
71
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 3 N 8 did_swap true No Swap
72
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 4 N 8 did_swap true
73
The Third “Bubble Up” 422364533671498 1 2 3 4 5 6 7 8 to_do index 5 4 N 8 did_swap true Swap
74
The Third “Bubble Up” 422363345671498 1 2 3 4 5 6 7 8 to_do index 5 4 N 8 did_swap true Swap
75
The Third “Bubble Up” 422363345671498 1 2 3 4 5 6 7 8 to_do index 5 5 N 8 did_swap true
76
The Third “Bubble Up” 422363345671498 1 2 3 4 5 6 7 8 to_do index 5 5 N 8 did_swap true Swap
77
The Third “Bubble Up” 452363342671498 1 2 3 4 5 6 7 8 to_do index 5 5 N 8 did_swap true Swap
78
After Third Pass of Outer Loop 452363342671498 1 2 3 4 5 6 7 8 to_do index 5 6 N 8 did_swap true Finished third “Bubble Up”
79
The Fourth “Bubble Up” 452363342671498 1 2 3 4 5 6 7 8 to_do index 4 1 N 8 did_swap false
80
The Fourth “Bubble Up” 452363342671498 1 2 3 4 5 6 7 8 to_do index 4 1 N 8 did_swap false Swap
81
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 1 N 8 did_swap true Swap
82
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 2 N 8 did_swap true
83
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 2 N 8 did_swap true No Swap
84
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 3 N 8 did_swap true
85
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 3 N 8 did_swap true No Swap
86
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 4 N 8 did_swap true
87
The Fourth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 4 N 8 did_swap true No Swap
88
After Fourth Pass of Outer Loop 452314334267698 1 2 3 4 5 6 7 8 to_do index 4 5 N 8 did_swap true Finished fourth “Bubble Up”
89
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 1 N 8 did_swap false
90
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 1 N 8 did_swap false No Swap
91
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 2 N 8 did_swap false
92
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 2 N 8 did_swap false No Swap
93
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 3 N 8 did_swap false
94
The Fifth “Bubble Up” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 3 N 8 did_swap false No Swap
95
After Fifth Pass of Outer Loop 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 4 N 8 did_swap false Finished fifth “Bubble Up”
96
Finished “Early” 452314334267698 1 2 3 4 5 6 7 8 to_do index 3 4 N 8 did_swap false We didn’t do any swapping, so all of the other elements must be correctly placed. We can “skip” the last two passes of the outer loop.
97
Summary “Bubble Up” algorithm will move largest value to its correct location (to the right) Repeat “Bubble Up” until all elements are correctly placed: –Maximum of N-1 times –Can finish early if no swapping occurs We reduce the number of elements we compare each time one is correctly placed
98
Truth in CS Act NOBODY EVER USES BUBBLE SORT NOBODY NOT EVER BECAUSE IT IS EXTREMELY INEFFICIENT LB
99
Mergesort
100
Sorting Sorting takes an unordered collection and makes it an ordered one. 5 12 3542 77 101 1 2 3 4 5 6 5 12 35 42 77101 1 2 3 4 5 6
101
Divide and Conquer Divide and Conquer cuts the problem in half each time, but uses the result of both halves: –cut the problem in half until the problem is trivial –solve for both halves –combine the solutions
102
Mergesort A divide-and-conquer algorithm: Divide the unsorted array into 2 halves until the sub-arrays only contain one element Merge the sub-problem solutions together: –Compare the sub-array’s first elements –Remove the smallest element and put it into the result array –Continue the process until all elements have been put into the result array 3723 6 8915 12 2 19
103
Algorithm Mergesort(Passed an array) if array size > 1 Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array)
104
More TRUTH in CS We don’t really pass in two arrays! We pass in one array with indicator variables which tell us where one set of data starts and finishes and where the other set of data starts and finishes. Honest. s1f1s2f2 LB
105
Algorithm Mergesort(Passed an array) if array size > 1 Divide array in half Call Mergesort on first half. Call Mergesort on second half. Merge two halves. Merge(Passed two arrays) Compare leading element in each array Select lower and place in new array. (If one input array is empty then place remainder of other array in output array) LB
106
674523146339842
107
674523146339842 674523146339842
108
674523146339842 674523146339842 45231498
109
674523146339842 674523146339842 45231498 2398
110
674523146339842 674523146339842 45231498 2398 Merge
111
674523146339842 674523146339842 45231498 2398 23 Merge
112
674523146339842 674523146339842 45231498 2398 2398 Merge
113
674523146339842 674523146339842 45231498 23984514 2398
114
674523146339842 674523146339842 45231498 23984514 Merge 2398
115
674523146339842 674523146339842 45231498 23984514 Merge 2398
116
674523146339842 674523146339842 45231498 23984514 45 Merge 239814
117
674523146339842 674523146339842 45231498 23984514 Merge 98451423
118
674523146339842 674523146339842 45231498 23984514 Merge 9814 2345
119
674523146339842 674523146339842 45231498 23984514 Merge 2314 23 9845
120
674523146339842 674523146339842 45231498 23984514 Merge 23984514 2345
121
674523146339842 674523146339842 45231498 23984514 Merge 23984514 234598
122
674523146339842 674523146339842 45231498 23984514 6763342 23984514 234598
123
674523146339842 674523146339842 45231498 23984514 6763342 676 23984514 234598
124
674523146339842 674523146339842 45231498 23984514 6763342 676 Merge 23984514 234598
125
674523146339842 674523146339842 45231498 23984514 6763342 676 6 Merge 23984514 234598
126
674523146339842 674523146339842 45231498 23984514 6763342 676 Merge 239845146 234598
127
674523146339842 674523146339842 45231498 23984514 6763342 6763342 23984514676 14234598
128
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 23984514676 14234598
129
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 3323984514676 14234598
130
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 422398451467633 14234598
131
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598
132
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 2398451464233 14234598 6 67
133
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 23984514633 14234598 633 6742
134
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 2398451464233 14234598 63342 67
135
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598 6334267
136
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 234598 334267 14 6
137
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 234598 64267 6 14 33
138
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 144598 64267 614 23 33
139
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142398 64267 61423 45 33
140
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142398 63367 6142333 45 42
141
674523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142398 63342 614233342 45 67
142
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 142345 63342 61423334245 98 67
143
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598 6334267 6142333424567
144
4523146339842 674523146339842 45231498 23984514 6763342 6763342 Merge 239845146764233 14234598 6334267 614233342456798
145
674523146339842 674523146339842 45231498 23984514 6763342 6763342 239845146764233 14234598 6334267 614233342456798
146
674523146339842 614233342456798
147
Summary Divide the unsorted collection into two Until the sub-arrays only contain one element Then merge the sub-problem solutions together
148
Selection Sort 513462 Comparison Data Movement Sorted
149
Selection Sort 513462 Comparison Data Movement Sorted
150
Selection Sort 513462
151
513462
152
513462
153
513462
154
513462
155
513462 Largest
156
Selection Sort 513426
157
513426
158
513426
159
513426
160
513426
161
513426
162
513426
163
513426 Larges t
164
Selection Sort 213456
165
213456
166
213456
167
213456
168
213456
169
213456
170
213456 Largest
171
Selection Sort 213456
172
213456
173
213456
174
213456
175
213456
176
213456 Largest
177
Selection Sort 213456
178
213456
179
213456
180
213456
181
213456 Largest
182
Selection Sort 123456
183
123456 DONE!
184
Insertion Sort 2323 1717 4545 1818 1212 2 1 2 6 5 4 3
185
Example: sorting numbered cards 2323 1717 4545 1818 1212 2 1 2 6 5 4 3 1 2 6 5 4 3
186
2323 1717 4545 1818 1212 2 1 2 6 5 4 3 1 2 6 5 4 3
187
2323 1717 4545 1818 1212 2 1 2 6 5 4 3 1 2 6 5 4 3
188
2323 1717 4545 1818 1212 2 1 2 6 5 4 3 1 2 6 5 4 3
189
2323 1717 4545 1818 1212 2 1 2 6 5 4 3 1 2 6 5 4 3
190
1818 1212 2 1717 2323 4545 1 2 6 5 4 3 1 2 6 5 4 3
191
THANK YOU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.