Download presentation
Presentation is loading. Please wait.
Published byElfreda Merry May Modified over 9 years ago
1
Chem. 412 – Phys. Chem. I
2
Free Energy Comparisons Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H - TS @Cont.T=> A sys = U sys - T S sys @Cont.T=> G sys = H sys - T S sys If A sys < 0, rxn spontaneous. (Constant V & T) If G sys < 0, rxn spontaneous. (Constant P & T) If A sys = 0, rxn @ equilibrium.If G sys = 0, rxn @ equilibrium. dA = -PdV – SdTdG = VdP - SdT
3
Free Energy Comparisons - I
4
Free Energy Comparisons - II
5
Free Energy Comparisons - III
6
Free Energy Comparisons - IV Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H - TS @Cont.T=> A sys = U sys - T S sys @Cont.T=> G sys = H sys - T S sys If A sys < 0, rxn spontaneous. (Constant V & T) If G sys < 0, rxn spontaneous. (Constant P & T) If A sys = 0, rxn @ equilibrium.If G sys = 0, rxn @ equilibrium. dA = -PdV – SdTdG = VdP - SdT
7
Free Energy Comparisons – I – F12
8
Free Energy Comparisons – II – F12
9
Free Energy Comparisons – III – F12
10
Free Energy Comparisons – III – F11 10
11
Phase Diagrams
12
The Phase Diagrams of H 2 O and CO 2 Phase Diagrams
13
Phase Transitions: Clapeyron Equation Over moderate temperature ranges:
14
Phase Transitions: Clapeyron Equation – I – F14
15
Phase Transitions: Clapeyron Equation – II – F14
16
Phase Transitions: Clapeyron Equation – III – F14
17
Phase Transitions: Clapeyron Equation – I – F13
18
Phase Transitions: Clapeyron Equation – II – F13
19
Phase Transitions: Clapeyron Equation – III – F13
20
Application of Clapeyron Equation Consider:Ice Water (ice, 101 kPa, 273 K) = 0.917x10 3 kg m -3 (liq, 101 kPa, 273 K) = 0.988x10 3 kg m -3 H f = 6.01 kJ mol -1 ( s liq ) Triple point at 0.6 kPa and 273.16 K What is the melting point at 1.5x10 5 kPa ( 1500 atm ) ? Application: Blade in Ice-Skating. Mathcad Key
21
Clausius-Clapeyron Equation Applicable only to:s g & liq g equilibria Integrated form: Indefinite Integrated form: T-dep form:
22
Clausius-Clapeyron Equation - I
23
Clausius-Clapeyron Equation - II
26
Clausius-Clapeyron Equation – I – F11 26
27
Clausius-Clapeyron Equation – II – F11
28
Standard States & G o rxn P o for gas:ideal gas; P o = 101.325 kPa non-ideal gas; (leave for now) for liquid:pure liquid at P o for solid:most stable crystalline structure at P o T o for all substances:298.15 K exactly S o o = 0 at 0 K for pure crystals H o f (T o ) = 0 for elements at reference state G convention must follow that of H & S G rxn from formation values
29
Substance H f (kJ/mol) G f (kJ/mol) S (J mol -1 K -1 ) C(s, diamond)1.882.842.43 C(s, graphite)005.69
31
P/T-Dependent Equations Variation of G with P for an ideal gas: Variation of G with T: Variation of K P with T:
32
P/T-Dependent Equations
33
A = U - TSG = H - TS If A sys < 0, rxn spontaneous. (Constant V & T) If G sys < 0, rxn spontaneous. (Constant P & T) dA = -PdV – SdTdG = VdP - SdT
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.