Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chem. 412 – Phys. Chem. I. Free Energy Comparisons Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H -  A sys =  U sys - T  S

Similar presentations


Presentation on theme: "Chem. 412 – Phys. Chem. I. Free Energy Comparisons Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H -  A sys =  U sys - T  S"— Presentation transcript:

1 Chem. 412 – Phys. Chem. I

2 Free Energy Comparisons Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H - TS @Cont.T=>  A sys =  U sys - T  S sys @Cont.T=>  G sys =  H sys - T  S sys If  A sys < 0, rxn spontaneous. (Constant V & T) If  G sys < 0, rxn spontaneous. (Constant P & T) If  A sys = 0, rxn @ equilibrium.If  G sys = 0, rxn @ equilibrium. dA = -PdV – SdTdG = VdP - SdT

3 Free Energy Comparisons - I

4 Free Energy Comparisons - II

5 Free Energy Comparisons - III

6 Free Energy Comparisons - IV Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H - TS @Cont.T=>  A sys =  U sys - T  S sys @Cont.T=>  G sys =  H sys - T  S sys If  A sys < 0, rxn spontaneous. (Constant V & T) If  G sys < 0, rxn spontaneous. (Constant P & T) If  A sys = 0, rxn @ equilibrium.If  G sys = 0, rxn @ equilibrium. dA = -PdV – SdTdG = VdP - SdT

7 Free Energy Comparisons – I – F12

8 Free Energy Comparisons – II – F12

9 Free Energy Comparisons – III – F12

10 Free Energy Comparisons – III – F11 10

11 Phase Diagrams

12 The Phase Diagrams of H 2 O and CO 2 Phase Diagrams

13 Phase Transitions: Clapeyron Equation Over moderate temperature ranges:

14 Phase Transitions: Clapeyron Equation – I – F14

15 Phase Transitions: Clapeyron Equation – II – F14

16 Phase Transitions: Clapeyron Equation – III – F14

17 Phase Transitions: Clapeyron Equation – I – F13

18 Phase Transitions: Clapeyron Equation – II – F13

19 Phase Transitions: Clapeyron Equation – III – F13

20 Application of Clapeyron Equation Consider:Ice  Water  (ice, 101 kPa, 273 K) = 0.917x10 3 kg m -3  (liq, 101 kPa, 273 K) = 0.988x10 3 kg m -3  H f = 6.01 kJ mol -1 ( s  liq ) Triple point at 0.6 kPa and 273.16 K What is the melting point at 1.5x10 5 kPa ( 1500 atm ) ? Application: Blade in Ice-Skating. Mathcad Key

21 Clausius-Clapeyron Equation Applicable only to:s  g & liq  g equilibria Integrated form: Indefinite Integrated form: T-dep form:

22 Clausius-Clapeyron Equation - I

23 Clausius-Clapeyron Equation - II

24

25

26 Clausius-Clapeyron Equation – I – F11 26

27 Clausius-Clapeyron Equation – II – F11

28 Standard States &  G o rxn P o for gas:ideal gas; P o = 101.325 kPa non-ideal gas; (leave for now) for liquid:pure liquid at P o for solid:most stable crystalline structure at P o T o for all substances:298.15 K exactly S o o = 0 at 0 K for pure crystals  H o f (T o ) = 0 for elements at reference state  G convention must follow that of  H &  S  G  rxn from formation values

29 Substance  H  f (kJ/mol)  G  f (kJ/mol) S  (J mol -1 K -1 ) C(s, diamond)1.882.842.43 C(s, graphite)005.69

30

31 P/T-Dependent Equations Variation of  G with P for an ideal gas: Variation of  G with T: Variation of K P with T:

32 P/T-Dependent Equations

33 A = U - TSG = H - TS If  A sys < 0, rxn spontaneous. (Constant V & T) If  G sys < 0, rxn spontaneous. (Constant P & T) dA = -PdV – SdTdG = VdP - SdT


Download ppt "Chem. 412 – Phys. Chem. I. Free Energy Comparisons Helmholtz F.E. (A)Gibbs F.E. (G) A = U - TSG = H -  A sys =  U sys - T  S"

Similar presentations


Ads by Google