Download presentation
Presentation is loading. Please wait.
Published bySamson Gaines Modified over 9 years ago
1
Option pricing with sparse grid quadrature JASS 2007 Marcin Salaterski
2
Overview Option –Definition –Pricing Quadrature –Multivariate –Univariate –Sparse grids Hierarchical basis Smolyak
3
Option Agreement in which the buyer has the right to buy (call) or sell (put) an asset at a set price on or before a future date. Value determined by an underlying asset. P ayo ® ( ca ll ) = max ( S - K, 0 ) P ayo ® ( pu t ) = max ( K - S, 0 )
4
Long put (Bought „selling” option)
5
Short call (Sold „buying” option)
6
Option pricing example I
7
Option pricing example II Construct a riskless, self-financing portfolio. –Start with no money. –Take a loan at a compound interest rate. –Buy underlying assets and sell an option. –After some time sell assets and repay option. –Repay loan. –Finish with no money.
8
Option pricing example III $ 22 £ ± ¡ $ 1 = $ 18 £ ± ¡ $ 0 ± = 0 : 25 $ 18 £ 0 : 25 = $ 4 : 50 $ 4 : 50 £ e ¡ : 12 £ 0 : 25 = $ 4 : 367 $ 20 £ 0 : 25 = $ 4 : 367 + V V = $ 0 : 633
9
Option pricing methods
10
Brownian Motion
11
Brownian Motion - example d S ( t ) S ( t ) = ¹ ( t ) d t + ¾ ( t ) d W ( t )
12
Mathematical model Asset price process: Option value equation: Numeraire: N ( t ) = exp ( Z t 0 r ( ¿ ) d ¿ ) V ( T ) = max ( S ( T ) ¡ K ; 0 ) \begin{eqnarray} dS(t) &=& \mu^{P}S(t)dt + \sigma S(t)dW^{P}(t) \nonumber \end{eqnarray}
13
Expectation method I Choose appropriate Numeraire. Calculate drift,so that are martingales, i.e.. Find the distribution of under measure. Calculate. ¹ Q N S ( t ) N ( t ) ; V ( t ) N ( t ) S ( t ) V ( t ) N ( t ) = E ( V ( v ) N ( v ) ) ; 8 0 < t < v < 1 V ( 0 ) Q N N ( t ) = exp ( R t 0 r ( ¿ ) d ¿ )
14
Expectation method II
15
Multivariate quadrature Product of univariate quadrature. Monte Carlo methods. Quasi Monte Carlo methods. Sparse grids.
16
Univariate quadrature – Trapezoidal rule I f = R 1 ¡ 1 f ( x ) d x ¼ Q f = P n k = 1 w k f ( x k ) R b a f ( x ) d x ¼ ( b ¡ a ) f ( a + b 2 )
17
Univariate quadrature methods Newton-Cotes – even point distance, hierarchical Clenshaw-Curtis – Chebyshev polynomials, hierarchical Gauss – polynomials, not hierarchical
18
Quadrature by Archimedes
19
Hierarchical basis I Basis function Distance between points Grid points Local basis functions h n = 2 ¡ n Á n ; i ( x ) = Á ( x ¡ x n ; i h n ) Á ( x ) = ( 1 ¡ j x j x 2 [ ¡ 1 ; 1 ] 0 o t h erw i se x n ; i = i h n ; 1 · i < 2 n ; i o dd
20
Hierarchical basis II
21
Hierarchical basis III
22
Hierarchical quadrature Z 1 ¡ 1 f ( x ) d x ¼ n X l = 1 X i 2 I c l ; i Z 1 ¡ 1 Á l ; i ( x ) d x
23
Full grid
24
Cost/Gain Gain: Costs: 2 ¡ 2 j l j 1 2 j l j 1 ¡ d
25
Sparse grid
26
Comparison – 3D
27
Smolyak I
28
Smolyak II
29
Smolyak III
30
Comparison
31
Literature On the numerical pricing of financial derivatives based on sparse grid quadrature – Michael Griebel, Numerical Methods in Finance, An Amamef Conference INRIA, 1. February, 2006 Slides to lecture Scientific Computing 2 – Prof. Bungartz, TUM An Introduction to Computational Finance Without Agonizing Pain - Peter Forsyth Mathematical Finance – Christian Fries, not published yet PDE methods for Pricing Derivative Securities - Diane Wilcox
32
Thank you !
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.