Presentation is loading. Please wait.

Presentation is loading. Please wait.

Option pricing with sparse grid quadrature JASS 2007 Marcin Salaterski.

Similar presentations


Presentation on theme: "Option pricing with sparse grid quadrature JASS 2007 Marcin Salaterski."— Presentation transcript:

1 Option pricing with sparse grid quadrature JASS 2007 Marcin Salaterski

2 Overview Option –Definition –Pricing Quadrature –Multivariate –Univariate –Sparse grids Hierarchical basis Smolyak

3 Option Agreement in which the buyer has the right to buy (call) or sell (put) an asset at a set price on or before a future date. Value determined by an underlying asset. P ayo ® ( ca ll ) = max ( S - K, 0 ) P ayo ® ( pu t ) = max ( K - S, 0 )

4 Long put (Bought „selling” option)

5 Short call (Sold „buying” option)

6 Option pricing example I

7 Option pricing example II Construct a riskless, self-financing portfolio. –Start with no money. –Take a loan at a compound interest rate. –Buy underlying assets and sell an option. –After some time sell assets and repay option. –Repay loan. –Finish with no money.

8 Option pricing example III $ 22 £ ± ¡ $ 1 = $ 18 £ ± ¡ $ 0 ± = 0 : 25 $ 18 £ 0 : 25 = $ 4 : 50 $ 4 : 50 £ e ¡ : 12 £ 0 : 25 = $ 4 : 367 $ 20 £ 0 : 25 = $ 4 : 367 + V V = $ 0 : 633

9 Option pricing methods

10 Brownian Motion

11 Brownian Motion - example d S ( t ) S ( t ) = ¹ ( t ) d t + ¾ ( t ) d W ( t )

12 Mathematical model Asset price process: Option value equation: Numeraire: N ( t ) = exp ( Z t 0 r ( ¿ ) d ¿ ) V ( T ) = max ( S ( T ) ¡ K ; 0 ) \begin{eqnarray} dS(t) &=& \mu^{P}S(t)dt + \sigma S(t)dW^{P}(t) \nonumber \end{eqnarray}

13 Expectation method I Choose appropriate Numeraire. Calculate drift,so that are martingales, i.e.. Find the distribution of under measure. Calculate. ¹ Q N S ( t ) N ( t ) ; V ( t ) N ( t ) S ( t ) V ( t ) N ( t ) = E ( V ( v ) N ( v ) ) ; 8 0 < t < v < 1 V ( 0 ) Q N N ( t ) = exp ( R t 0 r ( ¿ ) d ¿ )

14 Expectation method II

15 Multivariate quadrature Product of univariate quadrature. Monte Carlo methods. Quasi Monte Carlo methods. Sparse grids.

16 Univariate quadrature – Trapezoidal rule I f = R 1 ¡ 1 f ( x ) d x ¼ Q f = P n k = 1 w k f ( x k ) R b a f ( x ) d x ¼ ( b ¡ a ) f ( a + b 2 )

17 Univariate quadrature methods Newton-Cotes – even point distance, hierarchical Clenshaw-Curtis – Chebyshev polynomials, hierarchical Gauss – polynomials, not hierarchical

18 Quadrature by Archimedes

19 Hierarchical basis I Basis function Distance between points Grid points Local basis functions h n = 2 ¡ n Á n ; i ( x ) = Á ( x ¡ x n ; i h n ) Á ( x ) = ( 1 ¡ j x j x 2 [ ¡ 1 ; 1 ] 0 o t h erw i se x n ; i = i h n ; 1 · i < 2 n ; i o dd

20 Hierarchical basis II

21 Hierarchical basis III

22 Hierarchical quadrature Z 1 ¡ 1 f ( x ) d x ¼ n X l = 1 X i 2 I c l ; i Z 1 ¡ 1 Á l ; i ( x ) d x

23 Full grid

24 Cost/Gain Gain: Costs: 2 ¡ 2 j l j 1 2 j l j 1 ¡ d

25 Sparse grid

26 Comparison – 3D

27 Smolyak I

28 Smolyak II

29 Smolyak III

30 Comparison

31 Literature On the numerical pricing of financial derivatives based on sparse grid quadrature – Michael Griebel, Numerical Methods in Finance, An Amamef Conference INRIA, 1. February, 2006 Slides to lecture Scientific Computing 2 – Prof. Bungartz, TUM An Introduction to Computational Finance Without Agonizing Pain - Peter Forsyth Mathematical Finance – Christian Fries, not published yet PDE methods for Pricing Derivative Securities - Diane Wilcox

32 Thank you !


Download ppt "Option pricing with sparse grid quadrature JASS 2007 Marcin Salaterski."

Similar presentations


Ads by Google