Download presentation
Presentation is loading. Please wait.
Published byRalf Gibbs Modified over 9 years ago
1
何謂生物化學 ? (What is biochemistry?) 1
2
生物化學 授課教師 : 余兆松等 10 人 學分 : 4 課程簡介 : 生物由基本單位 — 細胞 — 所構成, 而細胞則由數種生物大分子所構成. 主要包括蛋白質, 核酸, 酯質及 醣類. 生物化學即以物理及化學的角度出發, 來探討這些生物大分子的構成, 性質及它們之間的交互 作用, 藉以初步了解生命運作的本質. 本課程為大學部課程, 透過不同專長教師講解指定教科書之內 容, 讓學生們對生物化學能有一全盤概念. 除此以外, 對於有關如何處理及分析生物大分子的技術亦 會作初步的介紹, 有興趣的同學亦可以此課程所學為出發點, 進一步投入生物醫學實研究的領域中. (The course seeks to describe the structure, organization, and functions of living matter in molecular terms. Three principal areas will be covered: (1) the structural chemistry of the components of living matter and the relationship of biological function to chemical structure, (2) metabolism, the chemical reactions that occur in living matter, and (3) molecular genetics which provides introduction on how genetic material is replicated, recombined and maintained, how the genetic information is flowed from DNA to protein, and how these processes are regulated. ) 教學目標:幫助學生們了解生命現象的化學基礎, 並建立生命現象如何運作的整體概念 教學方法:提供教學大綱講義, 課堂講授, 強調學習重點, 期中期末考試評估學習成果 成績考核:課堂出席率與表現及隨堂抽考 (20%), 三次期中考, 一次期末考試 (80%) Textbook: Lehninger, “Principles of Biochemistry”, 5th edition, 2008 Reference : 1 、 Marks, “Basic Medical Biochemistry A Clinical Approach”, 2nd edition, 2005. 2 、 Lange,“Case Files TM : Biochemistry”, 2nd edition, 2008. 2
3
為何要修習生物化學 ? 3
4
School of Traditional Chinese Medicine (School year 2011) I II III 4
5
如何有效學習生物化學 ? 5
6
Biochemistry Laboratory and clinical correlation (school year 2011) School of Chinese Medicine 6
7
7
8
Part I Foundations of Biochemistry The Orion Nebula ( 獵戶星雲 ) 8
9
Foundations of Biochemistry ---- INTROCUCTION 1. Distinctive Properties of Living Systems a. All living organisms are composed of cells. b. Biomolecules are present in living systems. c. Living systems are actively engaged in energy transformations. d. Homeostasis by flow of energy through the organism. e. Self-replication or reproduction. 2. Organization and Structure of Cell a. Prokaryotic cells. b. Animal cells. c. Plant cells. d. Viruses. 3. Biomolecules a. Major elements in living organisms. b. Biomolecules are carbon compounds. c. Biomolecular hierarchy. 9
10
4. Properties of Biomolecules a. Biological macromlecules have a “sense” or directionality. b. Biological macromlecules are informational. c. Biomolecules have characteristic three-dimensional structure. d. Weak forces maintain biological structure and determine biomolecular interactions. e. Structural complementarity determines biomolecular interaction. f. Biomolecular recognition is mediated by weak chemical forces. g. Weak forces restrict organisms to a narrow range of environmental conditions. 5. Biochemical reactions General Properties a. Biochemical reactions occur under mild conditions and are catalyzed by enzymes. b. Biochemical reactions are usually localized in the cells. c. Biochemical reactions are organized into pathways. d. Biochemical reactions are regulated. General types of chemical transformations in cells. a. Oxidation-reduction. b. Cleavage and formation of C-C bonds. c. Internal rearrangements. d. Group transfers. e. Condensation reactions. 10
11
The universal features of living cells 2. Organization and Structure of Cell a. Prokaryotic cells. b. Animal cells. c. Plant cells. d. Viruses. 11
12
Common structural features of bacterial cells 12
13
Turnip yellow mosaic virus Tobacco mosaic virus Bacteriophage T4 13
14
Two major types of eukaryotic cell: (a) an animal cell (b) an plant cell 14
15
15
16
The endomembrane system 16
17
Nuclear envelope Nucleus Nucleolus Chromatin 17
18
Chromosomes are visible microscopically during mitosis 18
19
Structure of a mitochondrion Rough ER 19
20
Structure of a chloroplast (Chlorophyll-containing organelles) 20
21
The three types of cytoskeletal filaments 21
22
22
23
Cellular connections 23
24
24
25
Elements essential to animal life and health 3. Biomolecules a. Major elements in living organisms. b. Biomolecules are carbon compounds. c. Biomolecular hierarchy. 25
26
Geometry of carbon bonding c. Biomolecular hierarchy. 26
27
Three ways to represent the structure of the amino acid alanine Configuration of geometric isomers 27
28
4. Properties of Biomolecules a. Biological macromlecules have a “sense” or directionality. b. Biological macromlecules are informational. c. Biomolecules have characteristic three-dimensional structure. d. Weak forces maintain biological structure and determine biomolecular interactions. e. Structural complementarity determines biomolecular interaction. f. Biomolecular recognition is mediated by weak chemical forces. g. Weak forces restrict organisms to a narrow range of environmental conditions. 28
29
Marcomolecules and their monomeric subunits 29
30
Informational and structural macromolecules 30
31
c. Biomolecules have characteristic three-dimensional structure. Structure of the protein brazzein as determined by NMR spectroscopy (a fruit component of a plant from western Africa, 2,000 sweeter than sucrose) 31
32
d. Weak forces maintain biological structure and determine biomolecular interactions. 32
33
Complementary fit of a macromolecule and a small molecule e. Structural complementarity determines biomolecular interaction. f. Biomolecular recognition is mediated by weak chemical forces. g. Weak forces restrict organisms to a narrow range of environmental conditions. 33
34
5. Biochemical reactions General Properties a. Biochemical reactions occur under mild conditions and are catalyzed by enzymes. b. Biochemical reactions are usually localized in the cells. c. Biochemical reactions are organized into pathways. d. Biochemical reactions are regulated. 34
35
General types of chemical transformations in cells. a. Oxidation-reduction. b. Cleavage and formation of C-C bonds. c. Internal rearrangements. d. Group transfers. e. Condensation reactions. 35
36
b. Cleavage and formation of C-C bonds. 36
37
c. Internal rearrangements. 37
38
d. Group transfers. 38
39
e. Condensation reactions. 39
40
40
41
41
42
Some biologically important hydrogen bonds 42
43
43
44
44
45
45
46
46
47
47
48
48
49
49
50
50
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.