Download presentation
Presentation is loading. Please wait.
1
The Effect of Downsloping on Precipitation Distributions in the Capital District of New York State
Kyle J. Pallozzi and Lance F. Bosart Department of Atmospheric and Environmental Sciences University at Albany/SUNY Albany, NY 12222 Robert Gaza New York State Department of Environmental Conservation Albany, NY 12233 NROW XV Albany, NY Wednesday 12 November 2014 Support Provided by: SUNY RF STEM Undergraduate Research Grant
2
Background and Motivation
Terrain Influences in the Northeast Rain shadowing in the Wyoming Valley of Pennsylvania (Brady and Waldstreicher 2001) 1998 Mechanicville, NY tornadogenesis (LaPenta et al. 2005) 1995 Great Barrington, MA tornadogenesis (Bosart et al. 2006) Severe weather distribution in eastern New York and western New England (Wasula et al. 2002)
3
Background and Motivation
Why should this be studied: Topographic features play a large role in the Capital District’s weather Past experience: Complicating factor in forecasting precipitation distributions during winter storms
4
Topographic Map of New York State
Taconics Heldebergs Greens Berkshires Catskills Source: maps.com
5
Source: Western Regional Climate Center
KALB Wind Rose ( ) Source: Western Regional Climate Center
6
Hurricane Sandy Precipitation
Source: AHPS Precipitation Analysis Source:ESRL
7
Hurricane Sandy Precipitation
Albany received only 3.3 mm (0.13 in) of precipitation Source: Interior of Eastern New York Weather Observers
8
Objectives Seek predictors to address these questions:
When will downsloping events occur? What will the magnitude of precipitation reduction be? What will the westward extent of reduced precipitation be? Want predictors to be operationally useful Candidate predictors are: 850 hPa wind 925 hPa wind Mean vector 850 hPa wind Mean vector 925 hPa wind
9
Methodology
10
Data Focus of Study: Capital District (NY) KALB Radisonde Data
850 hPa and 925 hPa winds NARR (North American Regional Reanalysis) Mean vector 850 hPa and 925 hPa winds (3 h) Focus of Study: Capital District (NY) Problem: ASOS stations too widely spaced to provide precipitation data Solution: Interior of Eastern New York Weather Observers Network of observers in the Albany area run by Bob Gaza
11
Station Selections Reliable Observers
Oriented in a west-east line through Albany across varying terrain
12
Eastern New York Weather Observers
Location Elevation (m) 165 438 15 213 1 97 187 84 146 196 13 451 50 km 15 1 187 13 165 146
13
Methodology Time period: 2002-2003 through 2012-2013
Criteria for an event Greater than 0.5” (12.7 mm) of precipitation at location 165 or 15 (western locations) October 15 through April 15 161 storms met criteria
14
Methodology Calculated mean 850 and 925 hPa vector winds (NARR)
Separated storms into twelve 30 degree bins Composite precipitation totals in each bin at the locations Repeated process for KALB radiosonde data Examined four bins ( degrees) of data Threshold: 20 kt for 850 hPa Threshold: 15 kt for 925 hPa
15
Results
16
850 hPa Mean Vector Wind vs. Precipitation (NARR)
17
850 hPa Mean Vector Wind vs. Precipitation (NARR)
18
850 hPa Wind Direction vs. Precipitation (RAOB)
19
925 hPa Mean Vector Wind vs. Precipitation (NARR)
20
925 hPa Mean Vector Wind vs. Precipitation (NARR)
21
925 hPa Wind Direction vs. Precipitation (RAOB)
22
Concluding Remarks Sd Results show that easterly winds at 850 hPa and 925 hPa lead to downsloping and reductions in precipitation totals for eastern portions of the study area Overall pattern was generally what was expected Very little difference in precipitation totals at locations 146 and 13
23
Future Work Sd Examine other variables with the end goal of better addressing the exact magnitude and western extent of downsloping Incorporate Radar Data -potentially scale observed precipitation to radar estimates throughout the cases
24
Numerical Results (NARR)
Bin Average Precipitation and Standard Deviation (mm) 850 direction #165 #15 #1 #187 #146 #13 events 0-30 17.1 18.2 19.1 20.3 32.5 31.6 5 2.7 2.93 3.07 7.44 9.07 10.5 30-60 37.6 35.8 34 28.7 34.4 8 20.9 18 17.6 14.4 14.3 60-90 74.6 58.2 48.6 42.4 36 38.6 23.9 21.2 16.1 16.5 15.5 90-120 46.7 41.1 35.4 32.3 30.4 31.1 13 29.1 22.4 20.7 23.6 20.8 19.2 33.4 34.2 29.9 25 22 11 17.4 16.8 11.1 8.62 31.3 34.1 30.3 26.4 24.1 23 24 19 18.9 18.3 27.2 28.4 28.6 26.6 26.7 26.1 43 15.2 14.8 14.2 14.6 14.9 22.5 22.1 21.4 26.3 27.8 30 11.2 12.4 12 15.6 16.6 20.4 18.7 25.5 14 8.87 8.84 10.7 14.7 12.7 17.8 16.9 8.29 4.95 4.28 4.94 6.78 12.6 37 35.7 35.3 43.1 42.6 2 7.18 2.33 1.62 3.59 21.7 17.5 13.7 9.14 1 925 direction #165 #15 #1 #187 #146 #13 events 0-30 30.8 29.3 28.7 24.7 32.2 32.4 18 17.3 15 15.4 12.7 14.7 13.6 30-60 55 51.3 45.3 39.5 40.2 40.8 10 20.4 16.9 15.2 13.9 60-90 36.9 33.3 30.9 30.2 28.4 19 27.9 21.7 21.4 22.3 19.3 90-120 34.8 36.6 27.4 25.9 25.8 16 18.5 19.7 19.8 17 24 26.6 24.3 21.3 17.7 17.2 32 11.7 11.8 10.8 10.1 7.99 7.59 27.1 27.2 28 28.2 15.8 15.7 14.2 15.1 18.7 19.6 18.6 26 28.3 9.17 8.79 8.54 8.98 16.3 17.8 16.2 16.5 17.1 19.9 21 8 4.54 2.7 3.57 7.44 8.68 6.96 25.4 28.5 30.1 24.9 30.6 30.7 2 12.9 7.54 12.4 19.4 16.6 17.4 18.3 33 4 4.06 4.02 4.49 6.87 16.1 21.5 27.8 22.7 19.1 20.6 13.1 15.3 9.34 31.6 29.7 32.9 37.3 23 17.6 20.7
25
Numerical Results (RAOB)
Bin Average Precipitation and Standard Deviation (mm) 850 hPa 925 hPa #165 #15 #1 #187 #146 #13 events 47.8 42 39.1 33.9 40.5 38.9 6 28.1 22.1 19.2 16.5 12.6 11.6 71.4 57.6 47.7 42.9 38.5 37.5 8 36.9 26.6 24.8 27.6 24.3 21.1 46.4 39.4 35.6 31.3 30.6 30.8 20 31.4 23.7 21.6 19.5 18.5 41 39.2 34.9 29.7 27.4 34 21.4 19.8 18.1 18.2 16.8 #165 #15 #1 #187 #146 #13 events 56.4 47.2 41.7 37.5 38.3 38.8 14 33.5 24 22.5 23.4 20.9 18.8 38.2 35.1 30.9 27.4 27.5 13 18.1 18.2 16.8 16.4 16.1 34.3 31.3 29.3 25 22.6 21.8 18 15.6 12.5 13.8 15.3 15 28.7 30.4 27.8 24.5 21.5 21.3 55 15.8 15.1 13.7 13.6 12.8 30-60 60-90 90-120
26
Numerical Results (Everything)
Bin Average Precipitation and Standard Deviation (mm) 850 direction #165 #15 #1 #187 #146 #13 events 925 direction 0-30 17.1 18.2 19.1 20.3 32.5 31.6 5 30.8 29.3 28.7 24.7 32.2 32.4 18 2.7 2.93 3.07 7.44 9.07 10.5 17.3 15 15.4 12.7 14.7 13.6 30-60 37.6 35.8 34 34.4 8 47.8 42 39.1 33.9 40.5 38.9 6 55 51.3 45.3 39.5 40.2 40.8 10 56.4 47.2 41.7 37.5 38.3 38.8 14 20.9 17.6 14.4 14.3 28.1 22.1 19.2 16.5 12.6 11.6 20.4 16.9 15.2 13.9 33.5 24 22.5 23.4 18.8 60-90 74.6 58.2 48.6 42.4 36 38.6 71.4 57.6 47.7 42.9 38.5 36.9 33.3 30.9 30.2 28.4 19 38.2 35.1 27.4 27.5 13 23.9 21.2 16.1 15.5 26.6 24.8 27.6 24.3 21.1 27.9 21.7 21.4 22.3 19.3 18.1 16.8 16.4 90-120 46.7 41.1 35.4 32.3 30.4 31.1 46.4 39.4 35.6 31.3 30.6 20 34.8 36.6 25.9 25.8 16 34.3 25 22.6 21.8 29.1 22.4 20.7 23.6 20.8 31.4 23.7 21.6 19.5 18.5 19.7 19.8 17 15.6 12.5 13.8 15.3 33.4 34.2 29.9 22 11 41 39.2 34.9 29.7 21.3 17.7 17.2 32 27.8 24.5 21.5 17.4 11.1 8.62 11.7 11.8 10.8 10.1 7.99 7.59 15.8 15.1 13.7 12.8 34.1 30.3 26.4 24.1 23 27.1 27.2 28 28.2 18.9 18.3 15.7 14.2 28.6 26.7 26.1 43 18.7 19.6 18.6 26 28.3 14.8 14.6 14.9 9.17 8.79 8.54 8.98 16.3 17.8 26.3 30 16.2 19.9 21 11.2 12.4 12 16.6 4.54 3.57 8.68 6.96 25.5 25.4 28.5 30.1 24.9 30.7 2 8.87 8.84 10.7 12.9 7.54 19.4 33 4 8.29 4.95 4.28 4.94 6.78 4.06 4.02 4.49 6.87 37 35.7 35.3 43.1 42.6 22.7 20.6 7.18 2.33 1.62 3.59 13.1 9.34 17.5 9.14 1 32.9 37.3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.