Download presentation
Presentation is loading. Please wait.
Published byHortense Golden Modified over 9 years ago
1
Start with a 120/240 multiwire branch circuit.
2
E= I= R= P= E= I= R= P= E= I= R= P= We’ll need to begin with some given values.
3
E=120V I= R= P= E=120V I= R= P= E=240V I= R= P=
4
Now lets add a load to each circuit. E=120V I= R= P= E=120V I= R= P= E=240V I= R= P=
5
Now lets add a load to each circuit. E=120V I= R= P=100W E=120V I= R= P=200W E=240V I= R= P=
6
Then calculate amps and resistance for each load. E=120V I= R= P=100W E=120V I= R= P=200W E=240V I= R= P=
7
Then calculate amps and resistance for each load. E=120V I= R= P=100W E=120V I= R= P=200W E=240V I= R= P=
8
Then calculate amps and resistance for each load. E=120V I=P/E R= P=100W E=120V I= R= P=200W E=240V I= R= P=
9
Then calculate amps and resistance for each load. E=120V I=0.8333A R= P=100W E=120V I= R= P=200W E=240V I= R= P=
10
Then calculate amps and resistance for each load. E=120V I=0.8333A R=E²/P P=100W E=120V I= R= P=200W E=240V I= R= P=
11
Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I= R= P=200W E=240V I= R= P=
12
Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=P/E R= P=200W E=240V I= R= P=
13
Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R= P=200W E=240V I= R= P=
14
Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=E²/P P=200W E=240V I= R= P=
15
Then calculate amps and resistance for each load. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
16
With these values known, we can begin to understand what happens when the neutral is opened. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
17
First, we’ll open the neutral conductor. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
18
First, we’ll open the neutral conductor. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
19
In doing so, we no longer have two circuits, but only one. The two loads are now in series. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
20
So we will erase the figures we have calculated so far. E=120V I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
21
So we will erase the figures we have calculated so far. E= I=0.8333A R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
22
So we will erase the figures we have calculated so far. E= I= R=144 W P=100W E=120V I=1.6667A R=72 W P=200W E=240V I= R= P=
23
So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E=120V I=1.6667A R=72 W P=200W E=240W I= R= P=
24
So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E= I=1.6667A R=72 W P=200W E=240V I= R= P=
25
So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E= I= R=72 W P=200W E=240V I= R= P=
26
So we will erase the figures we have calculated so far. Leave the values of R in place. Those will not change. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R= P=
27
Now add the values of the two loads’ resistances. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R= P=
28
Now add the values of the two loads’ resistances. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R=144+72 P=
29
Now add the values of the two loads’ resistances. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R=216 W P=
30
Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I= R=216 W P=
31
Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=E/R R=216 W P=
32
Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=
33
Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=E²/R
34
Now calculate I and P for the entire circuit. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
35
Since this is a series circuit, I is always the same. E= I= R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
36
Since this is a series circuit, I is always the same. E= I=1.1111A R=144 W P= E= I= R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
37
Since this is a series circuit, I is always the same. E= I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
38
Now calculate the voltage across each of the two loads. E= I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
39
Now calculate the voltage across each of the two loads. E=R*I I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
40
Now calculate the voltage across each of the two loads. E=160V I=1.1111A R=144 W P= E= I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
41
Now calculate the voltage across each of the two loads. E=160V I=1.1111A R=144 W P= E=R*I I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
42
Now calculate the voltage across each of the two loads. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
43
Now you can see what happens when you lose the neutral on a multiwire branch circuit. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
44
The more resistance, the higher the voltage.... E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
45
The less resistance, the lower the voltage. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
46
This is Ohm’s Law in a most practical use, and the reason Article 300.13(B) exists. E=160V I=1.1111A R=144 W P= E=80V I=1.1111A R=72 W P= E=240V I=1.1111A R=216 W P=266.7W
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.