Download presentation
Presentation is loading. Please wait.
Published byLaurel Green Modified over 9 years ago
1
Next Generation Chemistry II Kaye Truitt, Don Bratton, Tina Wagner MSMS
2
Qualitative Analysis of Six Common Substances Using Patterns of Reactivity boric acid boric acid cornstarch cornstarch magnesium sulfate magnesium sulfate sodium bicarbonate sodium bicarbonate sodium chloride sodium chloride sucrose sucrose
3
Standards MS Chemistry Framework: MS Chemistry Framework: Inquiry 1 F: data analysis (DOK 3) F: data analysis (DOK 3) G: draw conclusions from data to use technology for formal presentation (DOK 3) G: draw conclusions from data to use technology for formal presentation (DOK 3) Physical Science 2 A: describe and classify matter based on physical and chemical properties (DOK 1) A: describe and classify matter based on physical and chemical properties (DOK 1) E: compare properties of compounds according to their type of bonding (DOK 1) E: compare properties of compounds according to their type of bonding (DOK 1) Physical Science 3 C: classify chemical reactions by type (products and solubility rules) C: classify chemical reactions by type (products and solubility rules)
4
Standards Next Generation Science Standards: Next Generation Science Standards: HS-PS1-2: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of patterns of chemical properties. Science & Engineering Practices: Planning and carrying out investigations Planning and carrying out investigations Disciplinary Core Ideas: PS1.A The PT orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of the table reflect patterns of outer electron states. PS1.A The PT orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of the table reflect patterns of outer electron states. Cross-cutting Concepts: Patterns Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
5
Qualitative Analysis Compounds and reagents easily acquired Compounds and reagents easily acquired Reagents: Water, iodine, vinegar, NaOH, alcohol, heat Water, iodine, vinegar, NaOH, alcohol, heat Minimal equipment needed Minimal equipment needed
6
Qualitative Analysis Substances have similar physical properties regarding appearance Substances have similar physical properties regarding appearance Use patterns in reactivity and other physical properties such as melting point to identify substances Use patterns in reactivity and other physical properties such as melting point to identify substances STEM: qualitative analysis is critical in chemical industry, food industry, medicinal chemistry STEM: qualitative analysis is critical in chemical industry, food industry, medicinal chemistry
7
Qualitative Analysis Uses critical thinking to isolate one compound at a time. Uses critical thinking to isolate one compound at a time. For inquiry-based activity, eliminate flow chart and give reactivity patterns for types of compounds (i.e., carbonate reactions with acids) and allow students to create a flow chart for analysis. For inquiry-based activity, eliminate flow chart and give reactivity patterns for types of compounds (i.e., carbonate reactions with acids) and allow students to create a flow chart for analysis.
8
Iodine Clock Kinetics http://www.youtube.com/watch?v=C5tOEBmBAHg
9
Chemical Kinetics Study of factors affecting the rate of reaction and of mechanism of reaction Mechanism: Step-by-step molecular pathway of a reaction Experimental chemistry
10
Iodine Clock Kinetics Key Concept: Rate Law Mathematical expression of rate with respect to concentration of reactants only NH 4 + + NO 2 - N 2 + 2 H 2 O Rate = k[NH 4 + ][NO 2 - ] aA + bB cC + dD Rate = k[A] m [B] n
11
Iodine Clock Kinetics Key Concept: Rate Constant Represented by k in the rate law Must be mathematically determined Units vary with number of reactants and coefficients
12
Iodine Clock Kinetics Key Concept: Reaction Order Exponents (m and n) in rate law Often expressed as “The order of the reaction with respect to X”. Can be 0, and sometimes even fractional
13
Iodine Clock Kinetics Rate Laws and Mechanisms Some reactions have multiple steps NO 2 (g) + CO (g) NO (g) + CO 2 (g) NO 2 (g) + NO 2 (g) NO 3 (g) + NO (g) (slow) NO 3 (g) + CO (g) NO 2 (g) + CO 2 (g) (fast) The steps of a reaction mechanism must sum to the overall reaction equation The slowest step determines the rate and the rate law
14
Iodine Clock Kinetics 2010 MCF Alignment (Chemistry) 4.d Describe and identify factors affecting the solution process, rates of reaction, and equilibrium. (DOK 2) And most of the inquiry standards
15
Iodine Clock Kinetics NGSS Alignment HS-PS1-5: Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
16
Iodine Clock Kinetics Materials (different from video) 0.05 M KI solution 1% starch solution 0.01 M sodium thiosulfate solution 1.0 M sulfuric acid solution 0.05 M hydrogen peroxide solution Glassware
17
Iodine Clock Kinetics It is important to have a baseline to measure how factors affect kinetics Ensure that all students measure the baseline reaction several times to get an average Slight differences in execution can affect the timing The base reaction on the handout takes approximately 1 minute to react
18
5 microscale reactions to produce various gases (CO 2, NO 2, NH 3, O 2, H 2 ) Splint tests to identify CO 2, O 2, H 2 Lime water also identifies CO 2 Litmus test to identify NH 3 Brown gas = NO 2
19
Inquiry “twist” Determine a metals’ placement on the activity series based on whether hydrogen gas is evolved / produced.
20
Mississippi 2010 Framework INQUIRY - 1. Apply inquiry-based and problem-solving processes and skills to scientific investigations. Physical Science 3. Develop an understanding of the periodic table. c. Classify chemical reactions by type. (DOK 2) Single displacement, double displacement, synthesis (combination), decomposition, combustion, or precipitation. Products (given reactants) or reactants (given products) for each reaction type
21
dbratton@themsms.org http://bratton.themsms.org ktruitt@themsms.org cwagner@themsms.org
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.