Presentation is loading. Please wait.

Presentation is loading. Please wait.

2013 년도 1 학기 Chapter 4.2-3. 4.2 The equation of continuity 4.2.1. The equation of continuity in height coordinates If incompressible,→ 3-dimensionally.

Similar presentations


Presentation on theme: "2013 년도 1 학기 Chapter 4.2-3. 4.2 The equation of continuity 4.2.1. The equation of continuity in height coordinates If incompressible,→ 3-dimensionally."— Presentation transcript:

1 2013 년도 1 학기 Chapter 4.2-3

2 4.2 The equation of continuity 4.2.1. The equation of continuity in height coordinates If incompressible,→ 3-dimensionally nondivergent →water 대기는 compressible, but shallow → 연직적으로 변화 적음 → → → → → →→ → → →→ → → → → → → → →

3 4.2.2. The equation of continuity in pressure coordinates ; diagnostic Pressure coordinate 에서의 3 차원 바람장은, compressible 대기에서도 nondivergent → column 이 수평면적에 decrease 되면 연직적으로 팽창하면서 보상하게 된다. → total mean conserve → material volume 의 incompressible 처럼 행동한다 [ 그림 4.33] → →

4 Local time rate of change of the inverse of static stability Horizontal flux out from a volume of the inverse of static stability Vertical flux out from a volume of the inverse of static stability 4.2.3. Isentropic 좌표계에서의 연속방정식 → → → →→ → → →

5 → inverse static stability – tendency equation 좌표계에서의 ※ Static Stability ; parcel method no mix with surrounding air 주위가 hydrostatic equilibrium parcel : adiabatic ↓ P

6 Parcel environment → buoyancy force Initial z, ; dry adiabatic lapse rate ; environment lapse rate ; stable ; neutral ; unstable

7 그런데, ; statically stable equilibrium ; unstable ; neutral equilibrium ; static stability quantity Warm air Cold air Warm air Cold air

8 ; statically stable equilibrium ; Brunt-väisälä frequency

9 4.2.4. The kinematic boundary condition ; 질량 보존 원리 밀도가 지속적으로 변하는 boundary 를 질러 이 경계조건, 역학적 원리를 포함하지 않고 motion field 에서 결정 → Kinematic boundary condition 4.2.5. The dynamic boundary condition → finite P.G.F ; synoptic, sub-synoptic Side 1 Side 2 p 1 =p 2 ; dynamic boundary condition

10 4.3 The Thermodynamic equation 4.3.1. Dry thermodynamics ; expansion no heat exchange ; adiabatic ; compression heating rate Air parcel expands ; increase decrease Air parcel rises Air parcel sinks Air parcel contracks ; decrease increase

11 quasihorizontal temperature advection ; vertical displacement heat work done 과 관련된 adiabatic temperature change ; vertical temperature advection ; diabatic heating ; Static stability parameter 그런데, → → → → → → =

12 Static stability ≈ zero, neutral lapse rate, ~ dry adiabatic lapse rate → → → →

13 diabatic heating 이 중요한 경우, 열역학 제 1 법칙 s : specific entropy, (unit mass)

14 Potential temperature 에 관한 열역학 제 1 법칙 Density 가 p, T 둘 다의 함수 일 때, baroclinic vertical advection Adiabatic heating quasi-horizontal temps advection cut across solenoid → → → →

15 barotropic, ; thermal wind Ⅹ, no quasi horizontal temperature gradient Tropic, subtropic, midlatitude 여름 ~ barotropic 근사 equivalent barotropic : Baroclinic No geostrophic temperature advection → isotherm~height contour 에 나란 [ 그림 4.38] → geostrophic wind direction 이 같음. or (180°, opposite 모든 level 에서 barotropic vorticity eq. 만족 →→ →→^ → → →→ ^

16 4.3.2. Moist thermodynamics Moist, M v = mass of water vapor M d = mass of dry air M l = mass of liquid water M i = mass of ice Mixing ratio, Specific humidity Specific entropy,

17 ; Triple point triple point 에서의 단위질량당 entropy 열역학적평형 ; reversible, triple point; water vapor liquid water ice

18 단위질량당 내부에너지 그런데, ; 물을 증발시키기 위해, 열이 intermolecular bond 를 깰 수 있을 정도로 흡수 되어야 한다. 물의 단위 질량을 증발하는데 필요한 열, - A vapor 의 internal energy liquid internal energy ; vaporigation 의 잠열 ①

19 ② for vapor, ; 수증기의 정적비열 For liquid, ③ ; liquid 의 비열 ①, ②, ③ → A


Download ppt "2013 년도 1 학기 Chapter 4.2-3. 4.2 The equation of continuity 4.2.1. The equation of continuity in height coordinates If incompressible,→ 3-dimensionally."

Similar presentations


Ads by Google