Presentation is loading. Please wait.

Presentation is loading. Please wait.

N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,

Similar presentations


Presentation on theme: "N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,"— Presentation transcript:

1 N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. nicolas.fedorczak@cea.fr G. Bonhomme, F. Brochard, H. Bufferand, G. Ciraolo, M. Farge, Ph. Ghendrih, J.P. Gunn, P. Hennequin, L. Isoardi, R. Nguyen, C. Reux, F. Schwander, P. Tamain, L. Vermare J.P. Gunn

2 N. Fedorczak O-26 PSI 2010 San Diego 2 Poloidal mapping of turbulent transport in SOL plasmas Multi-diagnostics investigation of transport at the edge I. Fast visible imaging :  Evidences of transport phenomena & asymmetries II. Local turbulence with probe :  blobby ExB convection  blobby ExB convection III. Steady-state flows (probe)  Poloidal mapping of the radial flux Rake probe turbulence Fast visible imaging turbulence Tunnel Probe // flow

3 N. Fedorczak O-26 PSI 2010 San Diego 3 2. Fast visible imaging : evidences of transport phenomena Similar gas injections on High Field Side / Low Field Side Clear evidence of transport asymmetry --> filaments on the Low Field Side Fast imaging in the visible range --> fluctuations of SOL plasma density  Aligned with magnetic field & propagation (r,  )  filaments with k // >0

4 N. Fedorczak O-26 PSI 2010 San Diego 4 2. Plasma filaments : not a SOL phenomenon Other experiment : stationary fully detached plasmas (3-4 sec.) Other experiment : stationary fully detached plasmas (3-4 sec.) Again, field aligned structures only on the Low Field Side + local conditions ( *, P ) similar to SOL --> emissive ring in the confined region (r/a ~0.5 ) filaments  k // > 0 + open / closed field lines 20ms picture 20ms picture 20µs snapshot 20µs snapshot

5 N. Fedorczak O-26 PSI 2010 San Diego 5 3. Local fluctuations : blobby ExB radial transport Intermittent flux with a residual time averaged amplitude Intermittent flux with a residual time averaged amplitude Turbulent radial flux : Good coupling between E  & n e for radial transport (all time scales) Good coupling between E  & n e for radial transport (all time scales) Transport coefficient :

6 N. Fedorczak O-26 PSI 2010 San Diego 6 3. Local fluctuations : blobby ExB radial transport Whole radial profiles are treated in term of transport coefficient:  few cm. Value coherent with density profile  Need of a poloidal mapping of the radial flux in the SOL Radial increase of the velocity measured at the midplane TCV Garcia, Pitts PPCF 2007 Alcator-C mod Moyer JNM 1997 ?

7 N. Fedorczak O-26 PSI 2010 San Diego 7 4. Steady-state flows and flux asymmetries : evidences Flow transition when rolling the plasma up-down on outboard limiters.  Main contribution from particle source asymmetry M // (@ Top) & plasma position Near sonic // flows usually measured at the plasma top Near sonic // flows usually measured at the plasma top J.P. Gunn JNM 2007

8 N. Fedorczak O-26 PSI 2010 San Diego 8 4. Steady-state flows and radial flux : Amplitude & asymmetry Initial data Line integrated radial flux S r radial flux S r L. Isoardi & al. P. H. Bufferand & al. P2. 60

9 N. Fedorczak O-26 PSI 2010 San Diego 9 4. Radial flux tailoring : poloidal mapping Fine mapping around the outboard midplane by varying the SOL magnetic topology Radial particle flux centered on the outboard midplane (   ~  50 ° ) Multi-limiter SOL shaping: G. Ciraolo P2. 60

10 N. Fedorczak O-26 PSI 2010 San Diego 10 5. Mutli-diagnostics coherency Fast visible imaging  Convection of density filaments  Evidence of asymmetries Probes Probes Local blobby ExB transport consistent with Global particle balance (steady-state flux mapping) SOL transport : LFS blobby ExB convection + k // >0 Radial flux poloidal mapping @ LCFS

11 N. Fedorczak O-26 PSI 2010 San Diego 11 6. Multi-Tokamak coherency : Top to midplane measurements Local ExB flux @ Top + Poloidal flux mapping (function of radius) Usual behavior - Tore Supra - Tore Supra - JET - JET Usual behavior - TCV - TCV - Alcator C-mod - Alcator C-mod - DIII-D - DIII-D Extrapolated transport behavior coherent with midplane measurements Radial decrease @ Top Top  midplane extrapolation Radial increase @ midplane

12 N. Fedorczak O-26 PSI 2010 San Diego 12 7. Conclusion & perspectives  Radial particle transport in the SOL :  Driver of SOL // flow  Boundary conditions for core rotation.  Do not depend on magnetic topology - open / closed field lines  highly asymmetrical : centered on outboard midplane + k // >0 modes.  High fraction due to ExB density convections ( ~ 100%) ALCATOR C-mod : LaBombard NF 2004 TORE SUPRA : P. Hennequin EPS 2010 - X-point / limiter - X-point / limiter  Involved in apparent incoherencies :  Local / Global particle flux balance  Multi machine comparison  Realistic transport parameters for simulations of edge plasmas SOLEDGE 2D / SOLEDGE 3D Kelvin-Helmotz instability F. Schwander P. Multi-limiters SOL profiles G. Ciraolo, L. Isoardi, H. Bufferand P.


Download ppt "N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. G. Bonhomme,"

Similar presentations


Ads by Google