Download presentation
Presentation is loading. Please wait.
Published byShonda Bruce Modified over 9 years ago
1
N. Fedorczak O-26 PSI 2010 San Diego 1 Nicolas Fedorczak Poloidal mapping of turbulent transport in SOL plasmas. nicolas.fedorczak@cea.fr G. Bonhomme, F. Brochard, H. Bufferand, G. Ciraolo, M. Farge, Ph. Ghendrih, J.P. Gunn, P. Hennequin, L. Isoardi, R. Nguyen, C. Reux, F. Schwander, P. Tamain, L. Vermare J.P. Gunn
2
N. Fedorczak O-26 PSI 2010 San Diego 2 Poloidal mapping of turbulent transport in SOL plasmas Multi-diagnostics investigation of transport at the edge I. Fast visible imaging : Evidences of transport phenomena & asymmetries II. Local turbulence with probe : blobby ExB convection blobby ExB convection III. Steady-state flows (probe) Poloidal mapping of the radial flux Rake probe turbulence Fast visible imaging turbulence Tunnel Probe // flow
3
N. Fedorczak O-26 PSI 2010 San Diego 3 2. Fast visible imaging : evidences of transport phenomena Similar gas injections on High Field Side / Low Field Side Clear evidence of transport asymmetry --> filaments on the Low Field Side Fast imaging in the visible range --> fluctuations of SOL plasma density Aligned with magnetic field & propagation (r, ) filaments with k // >0
4
N. Fedorczak O-26 PSI 2010 San Diego 4 2. Plasma filaments : not a SOL phenomenon Other experiment : stationary fully detached plasmas (3-4 sec.) Other experiment : stationary fully detached plasmas (3-4 sec.) Again, field aligned structures only on the Low Field Side + local conditions ( *, P ) similar to SOL --> emissive ring in the confined region (r/a ~0.5 ) filaments k // > 0 + open / closed field lines 20ms picture 20ms picture 20µs snapshot 20µs snapshot
5
N. Fedorczak O-26 PSI 2010 San Diego 5 3. Local fluctuations : blobby ExB radial transport Intermittent flux with a residual time averaged amplitude Intermittent flux with a residual time averaged amplitude Turbulent radial flux : Good coupling between E & n e for radial transport (all time scales) Good coupling between E & n e for radial transport (all time scales) Transport coefficient :
6
N. Fedorczak O-26 PSI 2010 San Diego 6 3. Local fluctuations : blobby ExB radial transport Whole radial profiles are treated in term of transport coefficient: few cm. Value coherent with density profile Need of a poloidal mapping of the radial flux in the SOL Radial increase of the velocity measured at the midplane TCV Garcia, Pitts PPCF 2007 Alcator-C mod Moyer JNM 1997 ?
7
N. Fedorczak O-26 PSI 2010 San Diego 7 4. Steady-state flows and flux asymmetries : evidences Flow transition when rolling the plasma up-down on outboard limiters. Main contribution from particle source asymmetry M // (@ Top) & plasma position Near sonic // flows usually measured at the plasma top Near sonic // flows usually measured at the plasma top J.P. Gunn JNM 2007
8
N. Fedorczak O-26 PSI 2010 San Diego 8 4. Steady-state flows and radial flux : Amplitude & asymmetry Initial data Line integrated radial flux S r radial flux S r L. Isoardi & al. P. H. Bufferand & al. P2. 60
9
N. Fedorczak O-26 PSI 2010 San Diego 9 4. Radial flux tailoring : poloidal mapping Fine mapping around the outboard midplane by varying the SOL magnetic topology Radial particle flux centered on the outboard midplane ( ~ 50 ° ) Multi-limiter SOL shaping: G. Ciraolo P2. 60
10
N. Fedorczak O-26 PSI 2010 San Diego 10 5. Mutli-diagnostics coherency Fast visible imaging Convection of density filaments Evidence of asymmetries Probes Probes Local blobby ExB transport consistent with Global particle balance (steady-state flux mapping) SOL transport : LFS blobby ExB convection + k // >0 Radial flux poloidal mapping @ LCFS
11
N. Fedorczak O-26 PSI 2010 San Diego 11 6. Multi-Tokamak coherency : Top to midplane measurements Local ExB flux @ Top + Poloidal flux mapping (function of radius) Usual behavior - Tore Supra - Tore Supra - JET - JET Usual behavior - TCV - TCV - Alcator C-mod - Alcator C-mod - DIII-D - DIII-D Extrapolated transport behavior coherent with midplane measurements Radial decrease @ Top Top midplane extrapolation Radial increase @ midplane
12
N. Fedorczak O-26 PSI 2010 San Diego 12 7. Conclusion & perspectives Radial particle transport in the SOL : Driver of SOL // flow Boundary conditions for core rotation. Do not depend on magnetic topology - open / closed field lines highly asymmetrical : centered on outboard midplane + k // >0 modes. High fraction due to ExB density convections ( ~ 100%) ALCATOR C-mod : LaBombard NF 2004 TORE SUPRA : P. Hennequin EPS 2010 - X-point / limiter - X-point / limiter Involved in apparent incoherencies : Local / Global particle flux balance Multi machine comparison Realistic transport parameters for simulations of edge plasmas SOLEDGE 2D / SOLEDGE 3D Kelvin-Helmotz instability F. Schwander P. Multi-limiters SOL profiles G. Ciraolo, L. Isoardi, H. Bufferand P.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.