Download presentation
Presentation is loading. Please wait.
Published byDamian Hill Modified over 9 years ago
1
Ground-based spectroscopic studies of atmospheric gaseous composition Ground-based spectroscopic studies of atmospheric gaseous composition Yana Virolainen, Yuriy Timofeyev, Maria Makarova, Dmitry Ionov, Vladimir Kostsov, Alexander Polyakov, Anatoly Poberovsky, Marina Kshevetskaya, Anton Rakitin, Sergey Osipov, Hamud Imhasin Department of Physics of Atmosphere, Saint-Petersburg State University, St. Petersburg, Russia European Geosciences Union General Assembly 2011 Vienna, Austria 03-08 April 2011
2
Five most important air mass flow sectors for St. Petersburg: 1. Arctic Ocean and North Russia; 2. continental Russia and Eurasia; 3. Europe; 4. Baltic Sea; 5. Arctic Ocean and Scandinavia. [1], 14% [2], 11%[3], 16% [4], 18% [5], 41% Air mass origin for St. Petersburg, Russia
3
Devices for atmospheric gases measurements DeviceStartMethodSpectral range Measured gases Comments Spectrometer SIRS-2 1991Direct Sun 3 – 5 μm3 – 5 μm СО, CH 4, H 2 O Spectral resolution 0.3 – 0.5 сm -1 Spectrometers: Visible-IR - KSVU OCEAN OPTICS HR4000 UV HR4000 visible 2004 2009 Scattered solar radiation 420 – 520 nm 290 – 430 nm 410 – 630 nm О 3, NO 2, O 2 - O 2 Spectral resolution 1.3 nm 0.4 nm 0.6 nm MW-radiometer2007 MW atmospheric radiation 110 GHzО3О3 Vertical profile (25 – 60 km) Fourier- spectrometer Bruker IFS-125 2009Direct Sun 1 – 16 μm ~20 gases Spectral resolution – up to 0.002 см -1 http://troll.phys.spbu.rutroll.phys.spbu.ru
4
SIRS-2: CH 4 total column amount (TCA) In 1991- 2009 the CH 4 TCA linear trend is non- significant. Trend index is positive for Jan-Feb and negative for Jul-Aug zaits@troll.phys.spbu.ruzaits@troll.phys.spbu.ru – Maria Makarova The tendency is the increase of the amplitude of CH4 TCA annual cycle
5
Methane TCA seasonal variability Month CH 4 TCA 10 19 mol/cm 2 mean zaits@troll.phys.spbu.ruzaits@troll.phys.spbu.ru – Maria Makarova Dec-Jan – max values, Jun-Aug – min values. Annual cycle amplitude ~ 3.6% The annual variations of TCA may differ significantly from the mean annual cycle
6
SIRS-2: CO total column amount CO TCA 10 19 mol/cm 2 zaits@troll.phys.spbu.ruzaits@troll.phys.spbu.ru – Maria Makarova Linear trends for CO TCA are non-significant. The mean annual cycle for 1995- 2009 has max values in Feb-Mar and min values in Jul with ~20% amplitude
7
Stratospheric NO 2 : SCIAMACHY and KSVU good agreement: “SCIAMACHY-KSVU” relative difference is +4±52% ionov@troll.phys.spbu.ruionov@troll.phys.spbu.ru – Dmitry Ionov
8
Tropospheric NO 2 : OMI, KSVU and HYSPLIT relatively reasonable agreement for the period of comparison in January-March 2006 ionov@troll.phys.spbu.ruionov@troll.phys.spbu.ru – Dmitry Ionov
9
Stratospheric O 3 : OMI and OceanOptics reasonable agreement: “OMI-OceanOptics” relative difference is +1.1±6.4% ionov@troll.phys.spbu.ruionov@troll.phys.spbu.ru – Dmitry Ionov
10
Example of the ozone profile retrieval: November 28, 2010. 1 – retrieved ozone number density, 2 -measured spectrum, 3 - simulated spectrum, 4 – discrepancy. vlad@troll.phys.spbu.ruvlad@troll.phys.spbu.ru – Vladimir Kostsov Ozone sounding by microwave radiometer Comparison with MLS AURA satellite data
11
Measured gases Spectral windows, сm -1 Random error for one measurement, % Influenced gases H2OH2O2898 – 29051.5CH 4, HCl, HDO CH 4 2898 – 29050.8H 2 O, HCl, HDO N2ON2O2156 – 21641.0CO, H 2 O, O 3 CO2156 – 21641.5N 2 O, H 2 O, O 3 CO 2 2626.3 – 2627.01.8CH 4 C2H6C2H6 2976.6 – 2977.12.0O 3, H 2 O, CH 4 HCl2925.75 – 2926.01.7CH 4,H2O, HF4038.85 – 4039.05 2H 2 O, HDO CCl 3 F (CFC-11) 830 – 87013H 2 O, HNO 3, O 3 Errors of Bruker spectrometer TCA retrievals kit@troll.phys.spbu.rukit@troll.phys.spbu.ru – Anton Rakitin
12
CH 4 and CO TCA retrievals (Bruker) zaits@troll.phys.spbu.ruzaits@troll.phys.spbu.ru – Maria Makarova Average values of CH4 TCA for Mar- Jun 2009 obtained by two instruments are agree within 0.5%.
13
N 2 O TCA retrievals (Bruker/NDACC stations) kshevetskaya.marina@gmail.comkshevetskaya.marina@gmail.com – Marina Kshevetskaya Annual means of N 2 O TCA for local measurements are in good coincidence with annual means for NDACC stations
14
Max values – Feb-Mar, min values – summer-fall. Good agreement with measurements on NDACC stations. Good coincidence with satellite ACE-FTS measurements. Seasonal cycle of HF TCA polyakov@troll.phys.spbu.rupolyakov@troll.phys.spbu.ru – Alexander Polyakov
15
Bruker ozone TCA measurements Yana.Virolainen@JV14952.spb.eduYana.Virolainen@JV14952.spb.edu – Yana Virolainen TCA ozone measurements near St. Petersburg made by different instrumentation Dobson and M-124 – ground-based instruments located ~ 50 km NE of Peterhof OMI – satellite instrument, temporal-space coincidence ~ 100 km
16
Yana.Virolainen@JV14952.spb.eduYana.Virolainen@JV14952.spb.edu – Yana Virolainen The example of ozone TCA diurnal variations measured by Bruker spectrometer (noise component of ~ 3 D.U.) Correlation between ozone TCA obtained from different devices (mean – 0.3- 1.7%, RMS – 3-4%) Bruker ozone TCA measurements
17
Combined method (IR+MW) for ozone: errors Yana.Virolainen@JV14952.spb.eduYana.Virolainen@JV14952.spb.edu – Yana Virolainen Main characteristics: S – measurement error matrix (1) A– averaging kernel matrix (2) S=(S a -1 +K T S ε -1 K) -1 (1) A =(S a -1 +K T S ε -1 K) -1 K T S ε -1 K = SK T S ε -1 K (2) S a – a priori variability matrix for sought vector of atmospheric state K – the matrix of variational derivates of the radiation with respect atmospheric parameters S ε – the matrix of non-correlated measurement errors Errors of retrieving the ozone mixing ratio profile for different measurement scenarios
18
Yana.Virolainen@JV14952.spb.eduYana.Virolainen@JV14952.spb.edu – Yana Virolainen Combined method (IR+MW): ozone profile Averaging kernels for ozone measurements by interferometer and microwave radiometer Layer, km 0-1010-1515-2020-2525-3030-4040-50 U O3, DU 34.438.262.2100.786.182.214.2 σ apriori, % 303332 3031 σ aposteriori, % 3.76.45.63.84.03.65.9 Potential error of ozone retrieval in thick atmospheric layers
19
Main results and conclusions http://troll.phys.spbu.ru A large number of atmospheric trace gases (TG) are retrieved by different ground-based instrumentation Temporal variations (from diurnal cycles to long- term trends) of TG are studied on the basis of experimental data The TG measurements are used for numerical modeling and for validation of satellite data Further development of techniques for TG profiles retrieving and expanding the list of TG are planned
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.