Download presentation
Presentation is loading. Please wait.
Published byAnnis Willis Modified over 9 years ago
1
Chapter 4-2 Continuous Random Variables 主講人 : 虞台文
2
Content Functions of Single Continuous Random Variable Jointly Distributed Random Variables Independence of Random Variables Distribution of Sums Distributions of Multiplications and Quotients Conditional Densities Multivariate Distributions Multidimensional Changes of Variables
3
Functions of Single Continuous Random Variable Chapter 4-2 Continuous Random Variables
4
The Problem 已知 =?=?
5
Example 11 已知 =?=?
6
Example 11
8
Example 12
9
請熟記 ! 標準常態之平方為一個自由度的卡方
10
Example 13 0 as 0 y <16 0 as 0 y 4
11
Example 13 0 as 0 z <4 0 as 0 z 2
12
Example 14 x fX(x)fX(x) 1
13
x fX(x)fX(x) 1 How to generate exponentially distributed random numbers using a computer?
14
Example 14 x fX(x)fX(x) 1
15
Theorem 1 Let g be a differentiable monotone function on an interval I, and let g(I) denote its range. Let X be a continuous r. v. with pdf f X such that f X (x) = 0 for x I. Then, Y = g(X) has pdf f Y given by g or
16
Theorem 1 Let g be a differentiable monotone function on an interval I, and let g(I) denote its range. Let X be a continuous r. v. with pdf f X such that f X (x) = 0 for x I. Then, Y = g(X) has pdf f Y given by g or
17
X Y = g(X) Theorem 1 Y = g (X) and Case 1: Pf) y g1(y)g1(y) positive
18
X Y = g(X) Theorem 1 Y = g (X) and Case 2: Pf) y g1(y)g1(y) negative
19
Example 15 Redo Example 14 using Theorem 1. x fX(x)fX(x) 1 1 Y = g (X) and
20
Example 16 Y = g (X) and
21
Example 16 Y = g (X) and
22
Example 17
26
< 1 : DFR = 1 : CFR > 1 : IFR
27
Example 18 Let X be a continuous random variable. Define Y to be the cdf of X, i.e., Y = F X (X). Find f Y (y).
28
Random Number Generation The method to generate a random number X such that it possesses a particular distribution by a computer: 1. Let Y = F X (X). 2. Find 3. Generate a random variable by a computer in interval (0, 1). Let y be such a random number. 4. Computing, we obtain the desired random number x.
29
Example 19 How to generate a random variable X by a computer such that X ~ Exp( )? Let Y = F X (X) = 1 e X. So, Y ~ U(0, 1). Assume U(0, 1) can be generated by a computer. By letting X = 1 ln(1 Y), we then have X ~ Exp( ).
30
Jointly Distributed Random Variables Chapter 4-2 Continuous Random Variables
31
Definition Joint Distribution Functions The joint (cumulative) distribution function (jcdf) of random variables X and Y is defined by: F X,Y (x, y) = P(X x, Y y), < x < , < y < . (x, y)
32
Properties of a jcdf (x 1, y 1 ) (x 2, y 2 )
33
Properties of a jcdf ab c d (b, d) (b, c) (a, d) (a, c)
34
Definition Marginal Distribution Functions Given the jpdf F(x, y) of random variables X, Y. The marginal distribution functions of X and Y are defined respectively by
35
Definition Joint Probability Density Functions A joint probability density function (jpdf) of continuous random variable X, Y is a nonnegative function f X,Y (x, y) such that
36
Properties of a Jpdf fX(u)fX(u) fY(v)fY(v)
37
fX(u)fX(u) fY(v)fY(v) Marginal Probability Density Functions (see next page) Marginal Probability Density Functions (see next page)
38
Marginal Probability Density Functions
39
Example 20
46
X Y 1 1 0 0 000 1
47
X Y 1 1 0 0 000 1 (x, y)
48
Example 20 X Y 1 1 0 0 000 1 (x, y)
49
Example 20 X Y 1 1 0 0 000 1 (x, y)
50
Example 20
51
Example 21
52
X Y fX(x)fX(x) x y=xy=x
53
X Y fY(y)fY(y) y x=yx=y
54
X Y 105 5
55
Independence of Random Variables Chapter 4-2 Continuous Random Variables
56
Definition Independence of Random Variables Two random variables X and Y are said to be independent, denoted as, if
57
Theorem 2
58
Example 22 ?
59
?
60
?
61
Example 23 ?
62
? 1 1
63
?
64
Distribution of Sums Chapter 4-2 Continuous Random Variables
65
The Problem Given f(x, y) or F(x, y), and Z = (X, Y), F Z (z) = ? f Z (z) = ?
66
The Problem Given f(x, y) or F(x, y), and Z = (X, Y), F Z (z) = ? f Z (z) = ? x y AzAz
67
The Distribution of Sums Given f(x, y) or F(x, y), and Z = (X, Y), F Z (z) = ? f Z (z) = ? x y X + Y
68
The Distribution of Sums x y Z = X + Y
69
The Distribution of Sums Z = X + Y
70
The Distribution of Sums Z = X + Y
71
The Distribution of Sums Z = X + Y I(X), I(Y) 0 and
72
Example 24 Let X ~ Exp( ), and Y ~ Exp( ) be independent. Let Z = X + Y. Find f Z (z). I ( X ), I ( Y ) 0 Fact:
73
Example 25 Let X ~ U(0, 1) and Y ~ U(0, 1) be two independent variables. Find f X+Y. X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ?
74
Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? I(X), I(Y) 0 Define 積分區間分析
75
Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? 積分區間分析 Case 1:Case 2: 0 1 z1z1 z 0 1 z1z1 z I(X), I(Y) 0 Define 0< z 1 1 < z < 2
76
Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? Case 1:Case 2: I(X), I(Y) 0 Define 0< z 1 1 < z < 2
77
Example 25 X ~ U(0, 1), Y ~ U(0, 1) f X+Y = ? Case 1:Case 2: I(X), I(Y) 0 Define 0< z 1 1 < z < 2 z fZ(z)fZ(z)
78
Example 26 x y f(x, y) X ~ U(0, 1), Y ~ U(0, 1)
79
Example 26 x y f(x, y) X ~ U(0, 1), Y ~ U(0, 1) x y 2x + y = 2
80
Example 26 x y f(x, y) X ~ U(0, 1), Y ~ U(0, 1) x y x y = 0.5 x y = 0.5
81
Distributions of Multiplications and Quotients Chapter 4-2 Continuous Random Variables
82
Distributions of Multiplications and and Quotients 已知 I(X), I(Y) 0 and
83
Example 27 Let X ~ ( 1, ) and Y ~ ( 2, ) be independent random variables. Find the pdf of Y/X.
84
Example 27 Chapter 2 Exercise
85
Example 27
86
Conditional Densities Chapter 4-2 Continuous Random Variables
87
Conditional Densities Let X and Y be continuous random variables having jpdf f. The conditional density f Y|X is defined by
88
Facts
90
Example 28
93
Example 29
97
Multivariate Distributions Chapter 4-2 Continuous Random Variables
98
Definitions
99
Properties of Multivariate Distributions
100
Definition Independence Random variables X 1, …, X n are called independent if
101
Example 30
102
Example 31
105
Important Theorem of Sums To be proved in the next chapter.
106
Important Theorem of Sums
109
熟記 !!! 靈活的將它們用於解題
110
Multidimensional Changes of Variables Chapter 4-2 Continuous Random Variables
111
Multidimensional Changes of Variables Let X 1, X 2, …, X n be continuous r.v.’s with jpdf
112
Multidimensional Changes of Variables Let X 1, X 2, …, X n be continuous r.v.’s with jpdf 假設此函式為一對一 求反函式
113
Multidimensional Changes of Variables Let X 1, X 2, …, X n be continuous r.v.’s with jpdf 一對一 求反函式 Jacobin Matrix Jacobin Matrix
114
Example 34
115
求反函式 Jacobin Matrix Jacobin Matrix
116
Example 34 求反函式 Jacobin Matrix Jacobin Matrix
117
Example 34 求反函式 Jacobin Matrix Jacobin Matrix
118
Example 35
119
Define ? 求反函式 Jacobin Matrix Jacobin Matrix
120
Example 35 Define 求反函式 Jacobin Matrix Jacobin Matrix ?
121
Example 35 Define 求反函式 Jacobin Matrix Jacobin Matrix
122
Example 35 Define 求反函式 Jacobin Matrix Jacobin Matrix
123
Example 36 此例非一對一,以上方法非直接可用, 請參考講義。
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.