Download presentation
Presentation is loading. Please wait.
Published byOswald Phelps Modified over 9 years ago
1
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 1 Random Processes (1) Random variable: A quantity X whose value is not exactly known. Probability distribution function P X (x): The probability that a random variable X is less than or equal to a value x. 0.5 1 x PX(x)PX(x) Example 1: Random variable
2
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 2 0.5 1 x PX(x)PX(x) x1x1 x2x2 Probability of X within a range is straightforward: If we let x 2 -x 1 become very small … Random Processes (2)
3
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 3 Probability density function p X (x): Probability that random variable X lies within the range of x and x+dx. 0.5 1 x PX(x)PX(x) x pX(x)pX(x) dx Random Processes (3)
4
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 4 Expectation value E[X]: Expected (mean) value of random variable X over a large number of samples. Mean square value E[X 2 ]: Mean value of the square of a random variable X 2 over a large number of samples. Variance: Standard deviation: Random Processes (4)
5
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 5 Gaussian Function x 22 1.Provides a good model for the probability density functions of many random phenomena. 2.Can be easily characterized mathematically. 3.Combinations of Gaussian random variables are themselves Gaussian.
6
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 6 Joint Probability (1) If X and Y are statistically independent (i.e., uncorrelated): Consider 2 random variables:
7
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 7 Consider sum of 2 random variables: x y dx dy = dz determined by convolution of p X and p Y. Joint Probability (2)
8
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 8 * Example: Consider the sum of 2 non-Gaussian random processes: Joint Probability (3)
9
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 9 3 sources combined: * Joint Probability (4)
10
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 10 4 sources combined: * Joint Probability (5)
11
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 11 Central Limit Theorem: Superposition of random variables tends toward normality. Noise sources Joint Probability (6)
12
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 12 Fourier transform of Gaussians: F Recall: F F -1 Variances of sum of random normal processes add.
13
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 13 Autocorrelation function R X (t 1,t 2 ): Expected value of the product of 2 samples of a random variable at times t 1 & t 2. For a stationary random process, R X depends only on the time difference for any t Note Power spectral density S X ( ): S X ( ) given in units of [dBm/Hz]
14
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 14 Relationship between spectral density & autocorrelation function: Example 1: white noise infinite variance (non-physical)
15
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 15 Example 2: band-limited white noise x For parallel RC circuit capacitor voltage noise:
16
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 16 Random Jitter (Time Domain) Experiment: data source CDR (DUT ) analyzer CLK DATA RCK
17
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 17 Jitter Accumulation (1) Free-running oscillator output Histogram plots Experiment: Observe N cycles of a free-running VCO on an oscilloscope over a long measurement interval using infinite persistence. NT 11 22 33 44 trigger
18
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 18 Observation: As increases, rms jitter increases. proportional to 2 proportional to Jitter Accumulation (2)
19
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 19 Noise Spectral Density (Frequency Domain) osc osc + Sv()Sv() Power spectral density of oscillation waveform : L total includes both amplitude and phase noise L total ( ) given in units of [dBc/Hz] (log scale) 1/ 2 region (-20dBc/Hz/decade) Single-sideband spectral density : 1/ 3 region (-30dBc/Hz/decade)
20
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 20 Noise Analysis of LC VCO (1) active circuitry C L R -R Consider frequencies near resonance: C L + _ vcvc i nR noise from resistor
21
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 21 Noise current from resistor: C L + _ vcvc i nR Noise Analysis of LC VCO (2) Leeson’s formula (taken from measurements): Where F and 1/f 3 are empirical parameters. dBc/Hz spot noise relative to carrier power
22
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 22 Oscillator Phase Disturbance Current impulse q/ t _ + V osc t t ip(t)ip(t) V osc (t) V osc jumps by q/C Effect of electrical noise on oscillator phase noise is time-variant. Current impulse results in step phase change (i.e., an integration). current-to-phase transfer function is proportional to 1/s ip(t)ip(t) ip(t)ip(t)
23
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 23 Impulse Sensitivity Function (1) The phase response for a particular noise source can be determined at each point over the oscillation waveform. Impulse sensitivity function (ISF): (normalized to signal amplitude) change in phase charge in impulse t Example 1: sine wave t Example 2: square wave Note has same period as V osc.
24
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 24 Impulse Sensitivity Function (2) Recall from network theory: LaPlace transform: Impulse response: time-variant impulse response Recall: ISF convolution integral: from q can be expressed in terms of Fourier coefficients:
25
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 25 Case 1: Disturbance is sinusoidal:, m = 0, 1, 2, … negligible significant only for m = k (Any frequency can be expressed in terms of m and .) Impulse Sensitivity Function (3)
26
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 26 Impulse Sensitivity Function (4) For I 2 osc Current-to-phase frequency response: osc osc osc 2 osc 2 osc
27
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 27 Case 2: Disturbance is stochastic: Impulse Sensitivity Function (5) MOSFET current noise: thermal noise 1/f noise A 2 /Hz osc 2 osc thermal noise osc 2 osc 1/f noise
28
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 28 Impulse Sensitivity Function (6) osc 2 osc due to 1/f noise due to thermal noise Total phase noise: nn
29
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 29 Impulse Sensitivity Function (7) noise corner frequency n (log scale) (dBc/Hz) 1/( 3 region: −30 dBc/Hz/decade 1/( 2 region: −20 dBc/Hz/decade
30
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 30 t t Example 1: sine waveExample 2: square wave Impulse Sensitivity Function (8) Example 3: asymmetric square wave t will generate more 1/( 3 phase noise is higher will generate more 1/( 2 phase noise
31
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 31 Impulse Sensitivity Function (9) Effect of current source in LC VCO: V osc + _ Due to symmetry, ISF of this noise source contains only even-order coefficients − c 0 and c 2 are dominant. Noise from current source will contribute to phase noise of differential waveform.
32
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 32 Impulse Sensitivity Function (10) I D varies over oscillation waveform Same period as oscillation Let Thenwhere We can use
33
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 33 ISF Example: 3-Stage Ring Oscillator M1AM1A M1BM1B M2AM2A M2BM2B M3AM3A M3BM3B MS1MS1 MS2MS2 MS3MS3 R1AR1A R1BR1B R2AR2A R2BR2B R3AR3A R3BR3B + V out − f osc = 1.08 GHz PD = 11 mW Red curve: Unperturbed oscillation waveform Blue curve: Oscillation waveform perturbed by impulse
34
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 34 ISF of Diff. Pairs for each diff. pair transistor
35
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 35 ISF of Resistors for each resistor
36
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 36 ISF of Current Sources ISF shows double frequency due to source-coupled node connection. for each current source transistor
37
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 37 Phase Noise Calculation (Thermal noise) Using:C out = 1.13 pF V out = 601 mV p-p q max = 679 fC = −112 dBc/Hz @ f = 10 MHz
38
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 38 Phase Noise vs. Amplitude Noise (1) osc t v vv Spectrum of V osc would include effects of both amplitude noise v(t) and phase noise (t). How are the single-sideband noise spectrum L total ( ) and phase spectral density S ( ) related?
39
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 39 Phase Noise vs. Amplitude Noise (2) t t i(t)i(t) i(t)i(t) Vc(t)Vc(t)Vc(t)Vc(t) Recall that an input current impulse causes an enduring phase perturbation and a momentary change in amplitude: Amplitude impulse response exhibits an exponential decay due to the natural amplitude limiting of an oscillator...
40
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 40 + Phase noise dominates at low offset frequencies. Phase Noise vs. Amplitude Noise (3)
41
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 41 Phase & amplitude noise can’t be distinguished in a signal. Phase Noise vs. Amplitude Noise (4) noiseless oscillation waveform phase noise component amplitude noise component Amplitude limiting will decrease amplitude noise but will not affect phase noise. osc Sv()Sv() phase noise amplitude noise
42
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 42 Sideband Noise/Phase Spectral Density noiseless oscillation waveform phase noise component
43
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 43 Jitter/Phase Noise Relationship (1) Recall R and S ( ) are a Fourier transform pair: NT 11 22 33 44 autocorrelation functions
44
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 44 Jitter/Phase Noise Relationship (2)
45
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 45 Let Consistent with jitter accumulation measurements! Jitter/Phase Noise Relationship (3) Jitter from 1/( noise: 2 Let Jitter from 1/( noise: 3 ^ ^ ^ ^ ^
46
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 46 Jitter/Phase Noise Relationship (4) ff (dBc/Hz) -100 -20dBc/Hz per decade Let f osc = 10 GHz Assume phase noise dominated by 1/( ) 2 Setting f = 2 X 10 6 and S =10 -10 : Let = 100 ps (cycle-to-cycle jitter): = 0.02ps rms (0.2 mUI rms) Accumulated jitter: 2 MHz
47
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 47 More generally: ff (dBc/Hz) fmfm NmNm -20 dBc/Hz per decade Jitter/Phase Noise Relationship (5) rms jitter increases by a factor of 3.2 Let phase noise increase by 10 dBc/Hz:
48
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 48 Jitter Accumulation (1) K pd phase detector loop filter K vco VCO in out vco fb Open-loop characteristic: Closed-loop characteristic:
49
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 49 Jitter Accumulation (2) Recall from Type-2 PLL: |G| zp |1 + G| -40 dB/decade (dBc/Hz) 1/( 3 region: −30 dBc/Hz/decade 1/( 2 region: −20 dBc/Hz/decade 1 80 dB/decade As a result, the phase noise at low offset frequencies is determined by input noise...
50
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 50 f osc = 10 GHz Assume 1-pole closed-loop PLL characteristic Jitter Accumulation (3) ff (dBc/Hz) f 0 = 2 MHz -100 -20dBc/Hz per decade
51
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 51 Jitter Accumulation (4) (log scale) For large : = 0.02 ps rms cycle-to-cycle jitter f 0 = 2 MHz f osc = 10 GHz For small : = 1.4 ps rms Total accumulated jitter
52
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 52 The primary function of a PLL is to place a bound on cumulative jitter: (log scale) proportional to (due to thermal noise) proportional to (due to 1/f noise) Jitter Accumulation (5) Free-running VCO PLL
53
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 53 L( ) for OC-192 SONET transmitter Closed-Loop PLL Phase Noise Measurement
54
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 54 Other Sources of Jitter in PLL Clock divider Phase detector Ripple on phase detector output can cause high-frequency jitter. This affects primarily the jitter tolerance of CDR.
55
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 55 Jitter/Bit Error Rate (1) Histogram showing Gaussian distribution near sampling point 1UI Bit error rate (BER) determined by and UI … LR Eye diagram from sampling oscilloscope
56
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 56 R 0T Probability of sample at t > t 0 from left- hand transition: Probability of sample at t < t 0 from right- hand transition: Jitter/Bit Error Rate (2)
57
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 57 Total Bit Error Rate (BER) given by: Jitter/Bit Error Rate (3)
58
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 58 t 0 (ps) log BER Example: T = 100ps (64 ps eye opening) (38 ps eye opening) log(0.5) Jitter/Bit Error Rate (4)
59
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 59 Bathtub Curves (1) The bit error-rate vs. sampling time can be measured directly using a bit error-rate tester (BERT) at various sampling points. Note: The inherent jitter of the analyzer trigger should be considered.
60
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 60 Bathtub Curves (2) Bathtub curve can easily be numerically extrapolated to very low BERs (corresponding to random jitter), allowing much lower measurement times. Example: 10 -12 BER with T = 100ps is equivalent to an average of 1 error per 100s. To verify this over a sample of 100 errors would require almost 3 hours! t 0 (ps)
61
EECS 270C / Winter 2013Prof. M. Green / U.C. Irvine 61 Equivalent Peak-to-Peak Total Jitter BER 10 -10 10 -11 10 -12 10 -13 10 -14 , T determine BER BER determines effective Total jitter given by: Areas sum to BER
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.