Download presentation
Presentation is loading. Please wait.
Published byBerniece Carter Modified over 9 years ago
1
Radio quiet AGN B. Czerny Copernicus Astronomical Center Warsaw
2
B. CzernyMoriond 20052 VHE: are radio quiet AGN of any interest? bad news: only a small fraction of energy emitted above 100 KeV good news: AGN are the best probes of GR – X-ray spectroscopy
3
B. CzernyMoriond 20053 Outline general introduction X-ray spectroscopy current developments based on results obtained in collaboration with: S. Collin R. Goosman, M. Mouchet, A.-M. Dumont, M. Dovciak, V. Karas, A. Rozanska, G. Ponti
4
B. CzernyMoriond 20054 Radio quiet AGN: intro Definition: Properties: L from 10 47 erg/s down broad band spectra
5
B. CzernyMoriond 20055 Radio-quiet AGN:intro Albert Einstein (1879-1955) Karl Schwarzschild (1873-1916) Roy Kerr (1934-) John Michell (1724-1793) What are they? Black holes
6
B. CzernyMoriond 20056 Radio quiet AGN: intro What are they? Accreting black holes M ~ 10 6 – 10 10 Ms M~ from tens of Ms/year down
7
B. CzernyMoriond 20057 Type 1 and type 2 objects Type 1: viewed roughly face on not strongly obscured but warm absorber present Type 2: viewed at high inclinations strongly obscured (so called „dusty/molecular torus” – most probably a type of wind) High energy processes better followed in type 1 objects
8
B. CzernyMoriond 20058 Components: Cold optically thick accretion disk Hot optically thin plasma: geometry under discussion Paticles roughly in Keplerian motion if pressure gradient unimportant General relativity effect: presence of the marginally stable orbit
9
B. CzernyMoriond 20059 Emission of accretion disks Stationary cold Keplerian acccretion disk
10
B. CzernyMoriond 200510 Accretion disk spectra T max ~10 5 K Disk emission peaks in far UV Composite spectrum of bright quasars from sample of Fransis et al. (1991) after Morris, disk black body fit and schematic representation of the composite of Zheng et al/Laor et al.
11
B. CzernyMoriond 200511 AGN flow geometry L/LEdd < 0.1 disk far from marginally stable orbit L/LEdd ~0.1 – 1 disk approaches marginally stable orbit L/LEdd > 1 disk puffs up Plausible geometry:
12
B. CzernyMoriond 200512 Hot plasma emission Bremsstrahlung Synchrotron Compton scattering They form broad band spectra, difficult to assign to any particular distance from the gravity center; problems with definite determination of geometry
13
B. CzernyMoriond 200513 Cold plasma emission Thermal emission T ~ 10 5 K Reprocessing of incident hard X-rays - thermalization - Thomson/Compton scattering - emission of atomic lines In AGN elements like C,N,O, Si, S,… and Fe are not fully ionized in the disk even close to the marginally stable orbit The option of line emission gives the full advantage of X-ray spectroscopy
14
B. CzernyMoriond 200514 Broad K α iron line The shape of iron line tests the particle motion close to horizon
15
B. CzernyMoriond 200515 First detecion of K α line Detection of broad line in MCG -6-15-30 in ASCA data (Tanaka et al.. 1995)
16
B. CzernyMoriond 200516 New observations of K Broad line in the same object (MCG-6-30-15) measured with XMM (Fabian et al. 2002)
17
B. CzernyMoriond 200517 Variability of the line profile Detection Line profile in of variosu luminosity states in ASCA data (Iwasawa et al.. 1996) broad line in MCG -6-15-30 in ASCA data (Tanaka et al.. 1995)
18
B. CzernyMoriond 200518 Variability of hard X-rays Lightcurve of MCG -6-15-30 form XMM (Ponti et al.. 2004)
19
B. CzernyMoriond 200519 Time-dependent process
20
B. CzernyMoriond 200520 Single spot Computations of the reflection component require solution of radiative transfer - continuum - hundreds of atomic lines A few codes exists. Titan/Noar code of Collin, Dumont & Abrassart (2000) is the best for optically thick media.
21
B. CzernyMoriond 200521 Local spectrum Result depends on the flare phase Local X-ray spectrum of irradiated accretion disk (Collin et al. 2003) State 2: unexpanded disk State 3: disk expanded due to the X-ray heating
22
B. CzernyMoriond 200522 Single spot R. Goosmann, in preparation
23
B. CzernyMoriond 200523 Spot motion, light propagation in curved space
24
B. CzernyMoriond 200524 Mean and rms spectra Model parameters: a = 0.95, i =30 deg, M = 10 7 Ms Tfl = 2e5 (r/18) 3/2 [s], Ffl ~ r -3 [s], uniform flare distribution Work in progress…
25
B. CzernyMoriond 200525 Single flare observations Bright flare from MCG -6-15-30 Ponti et al.. 2004
26
B. CzernyMoriond 200526 Iron line delay in a single flare Ponti et al. 2004
27
B. CzernyMoriond 200527 In which sense AGN are better than GBH ? Typical current count rate 10 cts/s 10 000 cts/s Typical Keplerian timescale at inner disk orbit 10 3 s 10 -3 s so counts per single orbit 100 cts 10 cts lower ionization level GBH better for evolutionary studies
28
B. CzernyMoriond 200528 Spatial resolution of observations Typowe osiągane zdolności rozdzielcze: Typ Masa Odległość 1”[cm] 1”[R Schw ] GBH 10 10 kpc 10 17 3x10 11 Milky Way 2.6x10 6 10 kpc 10 17 10 6 MBH 10 7 50 Mpc 5x10 20 10 9 MBH 10 9 1 Gpc 10 22 2x10 9 Specjalne techniki (VLBI, fotometria plamkowa) pozwalają osiągnąć wyniki lepsze o parę rzędów wielkości, ale to wciąż za mało. Obszar w bezpośredniej bliskości czarnej dziury można jednak badać pośrednio poprzez analizę widma promieniowania, także w zależności od czasu.
29
B. CzernyMoriond 200529 Are central objects indeed black holes? So far everything is consistent with GR expectations although accuracy is not high
30
B. CzernyMoriond 200530 If something looks like a black hole … From www page of Peter King
31
B. CzernyMoriond 200531
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.