Presentation is loading. Please wait.

Presentation is loading. Please wait.

Synthesis, Application and Structural Analysis

Similar presentations


Presentation on theme: "Synthesis, Application and Structural Analysis"— Presentation transcript:

1 Synthesis, Application and Structural Analysis
– Planar-Chiral Hydrogen-Bond Donor Catalysts – Synthesis, Application and Structural Analysis Literature Seminar Montréal, Jakob Schneider 1

2 2

3 – Planar-Chiral Hydrogen-Bond Donor Catalysts –
Synthesis, Application and Structural Analysis Outlook: Hydrogen-Bond Catalysis [2.2]Paracyclophane Chemistry Synthesis of planar-chiral H-bond donor catalysts Organocatalytic applications Experimental and computational structural analysis Synthesis and Application of amino acid-based organocatalysts 3

4 Organocatalysis: Structural motivs
Takemoto, 2003 Rawal, 2002 L-proline-mediated enamine-catalysis; 1970 Wang, 2005 Akiyama, 2004 Jacobsen, 2004 MacMillan, 2003 Fu, 2002 Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743; Dalko, P. I.; Moisan, L. Angew. Chem. 2004, 116, ; Angew. Chem., Int. Ed. 2004, 43, 5138–5175; Fu, G. C. Acc. Chem. Res. 2000, 33, 412–420. 4 4

5 Bond energy (kcal/mol)
Hydrogen-Bond catalysis Properties of hydrogen bonds Strong Moderate Weak Type of bonding Mostly covalent Mostly electrostatic Electrostatic Length of H-Bond (Å) Bond angles (°) 90-150 Bond energy (kcal/mol) 14-40 4-15 <4 Hydrogen-bond vs. Brønsted acid catalysis Pihko, P. M. Hydrogen Bonding in Organic Synthesis, 2009, Wiley-VCH, Weinheim. 5 5

6 Broensted acid catalysis
BINOL-derived phosphoric acid-catalyzed addition of silyl ketene acetales to aldimines. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, ; Angew. Chem. 2004, 116, Akiyama, T.; Saitoh, Y.; Morita, H.; Fuchibe, K. Adv. Synth. Catal. 2005, 347, 6 6

7 Hydrogen Bond catalysis – Chiral Diols
TADDOL-catalyzed hetero-Diels Alder reaction H-Bond-promoted H-Bond Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146. Unni, A. K.; Takenaka, N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 7 7

8 Hydrogen-Bond catalysis – Development of (thio)urea compounds
Activation of epoxides and unsaturated ketones Schreiner´s electron-deficient N,N`-diphenyl thiourea Hine, J.; Ahn, K.; Gallucci, J. C.; Linden, S.-M. J. Am. Chem. Soc. 1984, 106, ; Hine, J.; Ahn, K. J. Org. Chem. 1987, 52, ; Etter, M. C.; Panunto, T. W. J. Am. Chem. Soc. 1988, 110, ; Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 8 8

9 Hydrogen-Bond catalysis
Strecker reaction of N-alkyl imines, catalyzed by Jacobsen´s Schiff-base thiourea Takemoto´s thiourea catalyst: asymmetric Michael reaction Bifunctional mode of action Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, ; Angew. Chem. 2000, 112, ; Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 9 9

10 Hydrogen-bond catalysis
Wang, 2005: Asymmetric MBH reaction. Asymmetric Michael reaction Wang, J.; Li, H.; Duan, W.; Zu, L.; Wang, W. Org. Lett. 2005, 7, ; Sibi, M. P.; Itoh, K. J. Am. Chem. Soc. 2007, 129, 10 10

11 Hydrogen-bond catalysis
Mono- and bidentate interaction of thiourea derivatives with anionic substrates Role of the thiourea: - preorganizing the arrangement of substrates - activating substrates through polarization - stabilizing charges, transition states or intermediates Zhang, Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 11 11

12 Proposed mechanisms Mechanistic controversies
Ternary complexes in the thiourea-catalyzed Michael reaction : a) Takemoto’s proposal and b) results calculated by Pápai et al Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, ; Hamza A; Schubert, G.; Soo´ s, T.; Papai, I. J. Am. Chem. Soc. 2006, 128, 12 12

13 [2.2]Paracyclophane Ar-ring distance: 3.08–3.09 Å C2 C1 C9 C10 C3 C4
Winberg, H. E.; Fawcett, F. S.; Mochel, W. E.; Theobald, C. W. J. Am. Chem. Soc. 1960, 82, ; Reich, H.; Cram, D. J. J. Am. Chem. Soc. 1967, 89, 13 13

14 [2.2]Paracyclophane Applications of [2.2]Paracyclophane-based
„Light-weight Parylene functions under rugged vacuum conditions and extreme temperatures, and has been proven in multiple spaceflight applications” “Parylene meets MIL-I-46058C, Army Regulation 70-71, NAV.INST , and USAF regs” Applications of [2.2]Paracyclophane-based polymers: Chen, H.-Y.; Hirtz, M.; Deng, X.; Laue, T.; Fuchs, H.; Lahann, J. J. Am. Chem. Soc. 2010, 132, 18023–18025.; 14 14

15 [2.2]Paracyclophane Transannular substitution: Pseudo-geminally directing effect of: acetyl, carbomethoxy, carboxy, nitro and sulfone substitutents Selective ortho-functionalization of 4-hydroxy[2.2]paracyclophane derivatives via Friedel-Crafts acylation or directed metalation Reich, H.; Cram, D. J. J. Am. Chem. Soc. 1967, 89, ; Reich, H. J.; Yelm, K. E. J. Org. Chem. 1991, 56, 15 15

16 [2.2]Paracyclophanes - Applications
Catalytic enantioselective cyclopropanation of styrenes Enantioselective diethylzinc addition to benzaldehyde Masterson, D. S.; Hobbs, T. L.; Glatzhofer, D. T. J. Mol. Cat. A: Chem. 1999, 145, 75-81; Danilova, T. I.; Rozenberg, V. I.; Vorontsov, E. V.; Starikova, Z. A.; Hopf, H. Tetrahedron: Asymmetry 2003, 14, ; Danilova, T. I.; Rozenberg, V. I.; Sergeeva, E. V.; Starikova, Z. A.; Bräse, S. Tetrahedron: Asymmetry 2003, 14, 16 16

17 [2.2]Paracyclophanes - Applications
a) 1,2-addition of diethylzinc to isobutyraldehyde b) 1,4-addition of diethylzinc to cinnamylaldehyde Hermanns, N.; Dahmen, S.; Bolm, C.; Bräse, S. Angew. Chem., Int. Ed. 2002, 41, ; Angew. Chem. 2002, 114, ; Ay, S.; Ziegert, R.; Zhang, H.; Nieger, M.; Rissanen, K.; Fink, K.; Kubas, A.; Gschwind, R. M.; Bräse, S.J. Am. Chem. Soc. 2010, 132, 17 17

18 [2.2]Paracyclophanes - Applications
Application of the Phanephos ligand in the enantioselective hydrogenation of β-ketoesters Fürstner´s [2.2]Pyridinophane- -based NHC ligand Epoxide ring-opening and Diels-Alder reaction (essentially racemic), catalyzed by RP-PHANOL Pye, P. J.; Rossen, K.; Reamer, R. A.; Volante, R. P.; Reider, P. J. Tetrahedron Letters, 1998, 39, ; Focken, T.; Rudolph, J.; Bolm, C. Synthesis, 2005, 3, ; Fürstner, A.; Alcarazo, M.; Krause, H.; Lehmann, C. W. J. Am. Chem. Soc. 2007, 129, 18 18

19 Development of planar-chiral catalysts
Bifunctional thiourea-catalyst H-bond donor Planar chirality Defined distance between the functionalities Flexible catalyst design 19 19

20 Synthesis Schneider, J. F.; Falk, F. C.; Fröhlich, R.; Paradies, J. Eur. J. Org. Chem. 2010, 2265–2269. 20 20

21 Synthesis Schneider, J. F.; Falk, F. C.; Fröhlich, R.; Paradies, J. Eur. J. Org. Chem. 2010, 2265–2269. 21 21

22 [2.2]Paracyclophanes – Synthetic Approaches
22 22

23 [2.2]Paracyclophanes – Synthetic Approaches
23 23

24 Synthesis 24 24

25 Synthesis N Br N O Br Versatile precursor synthesis 25 25

26 Synthesis Schneider, J. F.; Fröhlich, R.; Paradies, J. Synthesis 2010, 20, 3486–3492. 26 26

27 Synthesis Schneider, J. F.; Fröhlich, R.; Paradies, J. Synthesis 2010, 20, 3486–3492. 27 27

28 Synthesis Variation of the steric environment
Variation of the H-bond donor functionality 28 28

29 Organocatalytic applications
Asymmetric transfer hydrogenation of nitro olefins possible catalyst-substrate complex Schneider, J. F.; Falk, F. C.; Fröhlich, R.; Paradies, J. Eur. J. Org. Chem. 2010, 2265–2269. 29 29

30 Organocatalytic applications
Asymmetric transfer hydrogenation of nitro olefins possible catalyst-substrate complex 42%; <5% ee 30%; 24% ee 29%; 21% ee Schneider, J. F.; Falk, F. C.; Fröhlich, R.; Paradies, J. Eur. J. Org. Chem. 2010, 2265–2269. 30 30

31 Structural analysis 2.54 Å 2.67 Å
X-Ray structure of the racemic [2.2]Paracyclophane-thiourea H-bond-mediated association of the dimer 31 31

32 Structural analysis - Conformational Analysis
A quick introduction: 1. Simple Force Field Approach – Rough classification > +130 kJ 2. „Best of“ – Energy Optimization – simple method (e.g. B3LYP, B98) 3. Single Point Energy calculation (various methods and basis sets) mPW1K, MP2, MP2(FC), QCISD, … Comparison of relative energies 32

33 Structural analysis - Comparison of relative energies
- „Ranking“ dependent on applied method 33

34 Computational analysis of conformers
1. Force-field conformational analysis 2. Energy optimization with DFT (B98/6-31G(d)) 3. Single-point energy calculation with HF (MP2(FC)/6-31+G(2d,p)) 4. Comparison of all obtained structures 0.0 kJ/mol kJ/mol kJ/mol 34 34

35 Structural analysis – NMR-titration
1 2 3 Determination of the catalyst/substrate stoichiometry Addition (equiv) of the substrate Observing the complexation of substrates 35 35

36 Structural analysis – anion-complexation
co-crystal structure of a thiourea–NMe4Cl complex double hydrogen bonding 2.41 Å 2.49 Å NMe4+ Cl– 36 36

37 Structural analysis – anion-complexation
Complexation of DMSO DMSO δ (DMSO) = ppm δ = ppm δ = ppm δ = ppm δ = ppm Δδ = ppm 37 37

38 Structural analysis Binding mode of the thiourea catalyst:
weak H-bond- interactions strong H-bond- interactions 38 38

39 Synthesis of amino acid-based catalysts
easily accessible library of catalysts: commercially available amino acid esters as starting materials tertiary alcohols: secondary alcohols: primary alcohols: Schneider, J. F.; Lauber, M. B.; Muhr, V.; Kratzer, D.; Paradies, J. Org. Biomol. Chem. 2011, asap. 39 39

40 Application of amino acid-based catalysts
Asymmetric transfer hydrogenation of nitro olefins and nitro acrylates optimized conditions catalyst-screening: tertiary alcohols: 26 – 81%, <5 – 16% ee secondary alcohols: 70 – 90%, 20 – 62% ee primary alcohols: 78 – 99%, 50 – 70% ee 99%, 70% ee 40 40

41 Application of amino acid-based catalysts
Asymmetric transfer hydrogenation of nitro olefins and nitro acrylates scope: 99%, 70% ee 99%, 50% ee 97%, 67% ee 95%, 63% ee 88%, 56% ee 95%, 68% ee 76%, 87% ee 84%, 40% ee 95%, 60% ee 99%, 58% ee 93%, 54% ee 41 41

42 Application of amino acid-based catalysts
mechanistic considerations Schneider, J. F.; Lauber, M. B.; Muhr, V.; Kratzer, D.; Paradies, J. Org. Biomol. Chem. 2011, asap. 42 42

43 Conclusion Development of planar-chiral organocatalysts
Organocatalytic applications: transfer hydrogenation Conformational / substrate-binding analysis Synthesis and application of amino acid- based catalysts 43 43

44 Acknowledgements Montréal, 11.04.2011
Dr. Jan Paradies Prof. Stefan Bräse German Chemical Industry Association Landesgraduiertenförderung Baden-Württemberg 44


Download ppt "Synthesis, Application and Structural Analysis"

Similar presentations


Ads by Google