Download presentation
Presentation is loading. Please wait.
Published byMarsha Fields Modified over 9 years ago
1
Boolean Algebra and Logic Gates 1 Computer Engineering (Logic Circuits) Lec. # 10 (Sequential Logic Circuit) Dr. Tamer Samy Gaafar Dept. of Computer & Systems Engineering Faculty of Engineering Zagazig University
2
Boolean Algebra and Logic Gates 2 http://www.tsgaafar.faculty.zu.edu.eg Email: tsgaafar@yahoo.com Course Web Page
3
3 / 60 Sequential Circuits Combinational Circuit Memory Elements Inputs Outputs Asynchronous Synchronous Combinational Circuit Flip-flops Inputs Outputs Clock
4
4 / 60 Latches SR Latch S R Q 0 QQ’ 0 0 0 0 1 0 0 01 Q = Q0 Initial Value Transition Table Or Action Tble
5
5 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 1 1 0 0 0 10 Q = Q0 Transition Table Or Action Tble
6
6 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 110 0 1 00 0 1 1 0 1 Q = 0 Q = Q0 Transition Table Or Action Tble
7
7 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 110 0 1 001 0 1 1 1 0 1 0 01 Q = 0 Q = Q0 Q = 0 Transition Table Or Action Tble
8
8 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 110 0 1 001 0 1 101 1 0 0 0 1 0 1 10 Q = 0 Q = Q0 Q = 1 Transition Table Or Action Tble
9
9 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 110 0 1 001 0 1 101 1 0 010 1 0 1 1 0 0 1 10 Q = 0 Q = Q0 Q = 1 Transition Table Or Action Tble
10
10 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 110 0 1 001 0 1 101 1 0 010 1 0 110 1 1 0 0 1 1 1 00 Q = 0 Q = Q0 Q = 1 Q = Q’ 0 Transition Table Or Action Tble
11
11 / 60 Latches SR Latch S R Q 0 Q Q’ 0 0 001 0 0 110 0 1 001 0 1 101 1 0 010 1 0 110 1 1 000 1 1 1 1 0 1 1 00 Q = 0 Q = Q0 Q = 1 Q = Q’ 0 Transition Table Or Action Tble
12
12 / 60 Latches SR Latch S RQ 0 Q0Q0 0 10 1 01 1 Q=Q’=0 No change Reset Set Invalid S R Q 0 Q=Q’=1 0 11 1 00 1 Q0Q0 Invalid Set Reset No change S’ R’
13
13 / 60 Latches SR Latch S RQ 0 Q0Q0 0 10 1 01 1 Q=Q’=0 No change Reset Set Invalid S’ R’Q 0 Q=Q’=1 0 11 1 00 1 Q0Q0 Invalid Set Reset No change
14
14 / 60 Controlled Latches SR Latch with Control Input C S RQ 0 x x Q0Q0 1 0 0 Q0Q0 1 0 10 1 1 01 1 1 1Q=Q’Q=Q’ No change Reset Set Invalid
15
15 / 60 Controlled Latches D Latch (D = Data) C DQ 0 x Q0Q0 1 00 1 1 No change Reset Set C Timing Diagram D Q t Output may change
16
16 / 60 Controlled Latches D Latch (D = Data) C DQ 0 x Q0Q0 1 00 1 1 No change Reset Set C Timing Diagram D Q Output may change
17
17 / 60Flip-Flops Controlled latches are level-triggered Flip-Flops are edge-triggered C CLKPositive Edge CLKNegative Edge
18
18 / 60Flip-Flops Master-Slave D Flip-Flop D Latch (Master) DCDC Q D Latch (Slave) DCDC QQD CLK D QMaster QSlave Looks like it is negative edge-triggered MasterSlave
19
19 / 60Flip-Flops Edge-Triggered D Flip-Flop DQ Q DQ Q Positive Edge Negative Edge
20
20 / 60 Flip-Flops JK Flip-Flop JQ QK D = JQ’ + K’Q
21
21 / 60 Flip-Flops T- Flip-Flop D = TQ’ + T’Q = T Q JQ QK T DQ Q T D = JQ’ + K’Q TQ Q
22
22 / 60 Flip-Flop Characteristic Tables DQ Q DQ(t+1) 00 11 Reset Set JKQ(t+1) 00Q(t)Q(t) 010 101 11Q’(t) No change Reset Set Toggle JQ QK TQ Q TQ(t+1) 0Q(t)Q(t) 1Q’(t) No change Toggle
23
23 / 60 Flip-Flop Characteristic Equations DQ Q DQ(t+1) 00 11 Q(t+1) = D JKQ(t+1) 00Q(t)Q(t) 010 101 11Q’(t) Q(t+1) = JQ’ + K’Q JQ QK TQ Q TQ(t+1) 0Q(t)Q(t) 1Q’(t) Q(t+1) = T Q
24
24 / 60 Flip-Flop Characteristic Equations Analysis / Derivation JQ QK JK Q(t)Q(t) Q(t+1) 0000 0011 010 011 100 101 110 111 No change Reset Set Toggle
25
25 / 60 Flip-Flop Characteristic Equations Analysis / Derivation JQ QK JKQ(t)Q(t)Q(t+1) 0000 0011 0100 0110 100 101 110 111 No change Reset Set Toggle
26
26 / 60 Flip-Flop Characteristic Equations Analysis / Derivation JQ QK JKQ(t)Q(t)Q(t+1) 0000 0011 0100 0110 1001 1011 110 111 No change Reset Set Toggle
27
27 / 60 Flip-Flop Characteristic Equations Analysis / Derivation JQ QK JKQ(t)Q(t)Q(t+1) 0000 0011 0100 0110 1001 1011 1101 1110 No change Reset Set Toggle
28
28 / 60 Flip-Flop Characteristic Equations Analysis / Derivation JQ QK JKQ(t)Q(t)Q(t+1) 0000 0011 0100 0110 1001 1011 1101 1110 K 0100 J1101 Q Q(t+1) = JQ’ + K’Q
29
29 / 60 Flip-Flops with Direct Inputs Asynchronous Reset DQ Q R Reset R’DCLKQ(t+1) 0xx0
30
30 / 60 Flip-Flops with Direct Inputs Asynchronous Reset DQ Q R Reset R’DCLKQ(t+1) 0xx0 10 ↑ 0 11 ↑ 1
31
31 / 60 Flip-Flops with Direct Inputs Asynchronous Preset and Clear PR’CLR’DCLKQ(t+1) 10xx0 DQ Q CLR Reset PR Preset
32
32 / 60 Flip-Flops with Direct Inputs Asynchronous Preset and Clear PR’CLR’DCLKQ(t+1) 10xx0 01x x 1 DQ Q CLR Reset PR Preset
33
33 / 60 Flip-Flops with Direct Inputs Asynchronous Preset and Clear PR’CLR’DCLKQ(t+1) 10xx0 01x x 1 110 ↑ 0 111 ↑ 1 DQ Q CLR Reset PR Preset
34
34 / 60 Analysis of Clocked Sequential Circuits 1.Determine number of flip flops 2.Determine number of Inputs 3.Determine the input equation for the F.F. (State Equation) 4.Draw a Transition Table. (PS-NS/ PI-PO) 5.Draw STD.
35
Analysis of Clocked Sequential Circuits
36
37
38
39
39 / 60 Analysis of Clocked Sequential Circuits The State State = Values of all Flip-Flops Example A B = 0 0
40
40 / 60 Analysis of Clocked Sequential Circuits State Equations A(t+1) = DA ( Not D. A ) = A(t) x(t)+B(t) x(t) = A x + B x B(t+1) = DB = A’(t) x(t) = A’ x y(t) = [A(t)+ B(t)] x’(t) = (A + B) x’
41
41 / 60 Analysis of Clocked Sequential Circuits State Table (Transition Table) A(t+1) = A x + B x B(t+1) = A’ x y(t) = (A + B) x’ Present State Input Next State Output ABxABy 000 001 010 011 100 101 110 111 t+1 t t 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0
42
42 / 60 Analysis of Clocked Sequential Circuits State Table (Transition Table) A(t+1) = A x + B x B(t+1) = A’ x y(t) = (A + B) x’ Present State Next StateOutput x = 0x = 1x = 0x = 1 ABABAB yy 00000100 01001110 10001010 11001010 t+1 t t
43
State Transition Diagram (STD) 43 S0 Qa Qb 0 Y=0 & Z=1 X = 0 X = 1 State “Bubble” Transition Arc (For Input X=0) Transition Arc (For Input X=1) Input Variable (X) State (S0) Output Variables (Y & Z) State Variables (Qa & Qb)
44
44 / 60 Analysis of Clocked Sequential Circuits State Diagram 0 1 0 0 11 0/00/0 0/10/1 1/01/0 1/01/0 1/01/0 1/01/00/10/1 0/10/1 AB input/output Present State Next StateOutput x = 0x = 1x = 0x = 1 ABABAB yy 00000100 01001110 10001010 11001010
45
45 / 60 Analysis of Clocked Sequential Circuits D Flip-Flops Example: DQ Q x CLK y A Present State Input Next State A xy A 000 001 010 011 100 101 110 111 0 1 1 0 1 0 0 1 01 00,11 01,10 A(t+1) = DA = A x y
46
46 / 60 Analysis of Clocked Sequential Circuits JK Flip-Flops Example: JA = BKA = B x’ JB = x’KB = A x A(t+1) = JA Q’A + K’A QA = A’B + AB’ + Ax B(t+1) = JB Q’B + K’B QB = B’x’ + ABx + A’Bx’ Present State I/P Next State Flip-Flop Inputs ABxABJAJA KAKA JBJB KBKB 000 001 010 011 100 101 110 111 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1
47
47 / 60 Analysis of Clocked Sequential Circuits JK Flip-Flops Example: Present State I/P Next State Flip-Flop Inputs ABxABJAJA KAKA JBJB KBKB 000 001 010 011 100 101 110 111 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 11 0 101 0 1 0 0 1
48
48 / 60 Analysis of Clocked Sequential Circuits T Flip-Flops Example: TA = B xTB = x y = A B A(t+1) = TA Q’A + T’A QA = AB’ + Ax’ + A’Bx B(t+1) = TB Q’B + T’B QB = x B Present State I/P Next State F.F Inputs O/P ABxABTATA TBTB y 000 001 010 011 100 101 110 111 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1
49
49 / 60 Analysis of Clocked Sequential Circuits T -Flip-Flops Example: Present State I/P Next State F.F Inputs O/P ABxABTATA TBTB y 000 001 010 011 100 101 110 111 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0000001100000011 0 1 1 1 0 0/00/0 1/01/0 0/00/0 1/01/0 1/01/0 1/11/1 0/00/0 0/10/1
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.