Download presentation
Presentation is loading. Please wait.
Published byVirginia Bishop Modified over 9 years ago
1
Carnegie Mellon 1 Machine-Level Programming I: Basics Slides based on from those of Bryant and O’Hallaron
2
Carnegie Mellon 2 Machine Programming: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations
3
Carnegie Mellon 3 Intel x86 Evolution: Milestones NameDateTransistorsMHz 8086197829K5-10 First 16-bit Intel processor. Basis for IBM PC & DOS 1MB address space 3861985275K16-33 First 32 bit Intel processor, referred to as IA32 Added “flat addressing”, capable of running Unix Pentium 4E2004125M2800-3800 First 64-bit Intel x86 processor, referred to as x86-64 Core 22006291M1060-3500 First multi-core Intel processor Core i72008731M1700-3900 Four cores (our shark machines)
4
Carnegie Mellon 4 Intel x86 Processors, cont. Machine Evolution 8086 1978 0.03M 38619850.3M Pentium19933.1M Pentium/MMX19974.5M PentiumPro19956.5M Pentium III19998.2M Pentium 4200142M Pentium 4E 2004 125M Core 2 Duo2006291M Core i72008731M Core i7 2014 2.6 Billion Intel’s first multi-core processor Intel’s first 64-bit processor Intel’s first 32-bit processor
5
Carnegie Mellon 5 2015 State of the Art Core i7 Broadwell 2015 Desktop Model 4 cores Integrated graphics 3.3-3.8 GHz 65W Server Model 8 cores Integrated I/O 2-2.6 GHz 45W
6
Carnegie Mellon 6 Machine Programming I: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations
7
Carnegie Mellon 7 ISA ISA (instruction set architecture) is a specification of the machine instructions implemented by a processor The part of microprocessor design that one needs to understand or write assembly/machine code. Includes: registers, native data types, addressing modes etc. Example ISAs: Intel/AMD: IA32, x86-64 ARM: Used in almost all mobile phones
8
Carnegie Mellon 8 CPU Machine Code View (Programmer-Visible) CPU State PC: Program counter Store address of next instruction Called “RIP” (x86-64) Registers Store frequently used program data Condition codes Store status of most recent arithmetic or logical operation Used for conditional branching PC Registers Memory Code Data Stack Addresses Data Instructions Condition Codes Memory Byte addressable array Code and user data
9
Carnegie Mellon 9 text binary Compiler ( gcc –Og –c p1.c p2.c ) Linker ( gcc or ld ) C program ( p1.c p2.c ) Object program ( p1.o p2.o ) Executable program ( p ) Turning C into Object Code Compiler transforms statements, expressions, procedures into low-level instruction sequences
10
Carnegie Mellon 10 Compiling Into Assembly C Code (sum.c) long plus(long x, long y); void sumstore(long x, long y, long *dest) { long t = plus(x, y); *dest = t; } sum.s sumstore: pushq %rbx movq %rdx, %rbx call plus movq %rax, (%rbx) popq %rbx ret To generate sum.s : gcc –Og –S sum.c To generate sum.o: gcc –Og –c sum.c Assembly: the human readable form of machine code sum.s is the human readable version of sum.o
11
Carnegie Mellon 11 Machine-level programming: Data Types “Integer” data of 1, 2, 4, or 8 bytes Data values Memory Addresses Floating point data of 4, 8, or 10 bytes No aggregate types such as arrays or structures
12
Carnegie Mellon 12 Machine-level programming: Operations Perform arithmetic function on register or memory data Transfer data between memory and register Load data from memory into register Store register data into memory Transfer Control Unconditional jumps Conditional branches
13
Carnegie Mellon 13 Machine-level programming: An Example C Code Assembly Move 8-byte value (quad-words) from register %rax to memory Object Code 3-byte instruction Stored at address 0x40059e *dest = t; movq %rax, (%rbx) 0x40059e: 48 89 03
14
Carnegie Mellon 14 Code for sum.o 0x0400595: 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0x48 0x89 0x03 0x5b 0xc3 Object Code Assembler Translates.s into.o Binary encoding of each instruction Not executable due to missing linkages between code in different files Linker Resolves references between files Combines with libraries E.g., code for malloc, printf Total of 14 bytes Each instruction 1, 3, or 5 bytes Starts at address 0x0400595
15
Carnegie Mellon 15 Disassembled Disassembling Object Code Disassembler objdump –d sum.o Produces approximate rendition of assembly code Can be run on either a.out (complete executable) or.o file 0000000000400595 : 400595: 53 push %rbx 400596: 48 89 d3 mov %rdx,%rbx 400599: e8 f2 ff ff ff callq 400590 40059e: 48 89 03 mov %rax,(%rbx) 4005a1: 5b pop %rbx 4005a2: c3 retq
16
Carnegie Mellon 16 Disassembled Dump of assembler code for function sumstore: 0x0000000000400595 : push %rbx 0x0000000000400596 : mov %rdx,%rbx 0x0000000000400599 : callq 0x400590 0x000000000040059e : mov %rax,(%rbx) 0x00000000004005a1 :pop %rbx 0x00000000004005a2 :retq Alternate Disassembly Within gdb Debugger gdb sum disassemble sumstore x/14xb sumstore Examine the 14 bytes starting at sumstore Object 0x0400595: 0x53 0x48 0x89 0xd3 0xe8 0xf2 0xff 0x48 0x89 0x03 0x5b 0xc3
17
Carnegie Mellon 17 What Can be Disassembled? Anything can be interpreted as executable code Disassembler starts at some byte and dissembles one instruction after another Do not know when instructions stop and when data start Not an exact science, esp. when code is purposefully obfuscated
18
Carnegie Mellon 18 Machine Programming: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations
19
Carnegie Mellon 19 %rsp x86-64 Integer Registers Can reference low-order 4 bytes (also low-order 1 & 2 bytes) %eax %ebx %ecx %edx %esi %edi %esp %ebp %r8d %r9d %r10d %r11d %r12d %r13d %r14d %r15d %r8 %r9 %r10 %r11 %r12 %r13 %r14 %r15 %rax %rbx %rcx %rdx %rsi %rdi %rbp
20
Carnegie Mellon 20 movq Source, Dest Operand Types Immediate: Constant integer data Example: $0x400, $-533 Encoded with 1, 2, or 4 bytes Register: One of 16 integer registers Example: %rax, %r13 %rsp reserved for special use Some others have special uses for particular instructions Memory: 8 consecutive bytes of memory at address given by register Various “address modes” Simplest example: (%rax) Moving Data Prefixed with $
21
Carnegie Mellon 21 movq Operand Combinations Cannot do memory-memory transfer with a single instruction movq Imm Reg Mem Reg Mem Reg Mem Reg SourceDestC Analog movq $0x4,%raxtemp = 0x4; movq $-147,(%rax)*p = -147; movq %rax,%rdxtemp2 = temp1; movq %rax,(%rdx)*p = temp; movq (%rax),%rdxtemp = *p; Src,Dest
22
Carnegie Mellon 22 Simple Memory Addressing Modes Normal(R)Mem[Reg[R]] Register R specifies memory address movq (%rcx),%rax DisplacementD(R)Mem[Reg[R]+D] Register R specifies start of memory region Constant displacement D specifies offset movq 8(%rbp),%rdx
23
Carnegie Mellon 23 Example of Simple Addressing void swap (long *xp, long *yp) { long t0 = *xp; long t1 = *yp; *xp = t1; *yp = t0; } swap: movq (%rdi), %rax movq (%rsi), %rdx movq %rdx, (%rdi) movq %rax, (%rsi) ret
24
Carnegie Mellon 24 Understanding Swap () 123 456 %rdi %rsi %rax %rdx 0x120 0x100 Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address Value of first argument Value of second argument
25
Carnegie Mellon 25 Understanding Swap () 123 456 %rdi %rsi %rax %rdx 0x120 0x100 123 Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address
26
Carnegie Mellon 26 Understanding Swap () 123 456 %rdi %rsi %rax %rdx 0x120 0x100 123 456 Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address
27
Carnegie Mellon 27 Understanding Swap () 456 %rdi %rsi %rax %rdx 0x120 0x100 123 456 Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address
28
Carnegie Mellon 28 Understanding Swap () 456 123 %rdi %rsi %rax %rdx 0x120 0x100 123 456 Registers Memory swap: movq (%rdi), %rax # t0 = *xp movq (%rsi), %rdx # t1 = *yp movq %rdx, (%rdi) # *xp = t1 movq %rax, (%rsi) # *yp = t0 ret 0x120 0x118 0x110 0x108 0x100 Address
29
Carnegie Mellon 29 Complete Memory Addressing Modes General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+ D] D: Constant “displacement” Rb: Base register: Any of 16 integer registers Ri:Index register: Any, except for %rsp S: Scale: 1, 2, 4, or 8 (why these numbers?) Special Cases (Rb,Ri)Mem[Reg[Rb]+Reg[Ri]] D(Rb,Ri)Mem[Reg[Rb]+Reg[Ri]+D] (Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]]
30
Carnegie Mellon 30 ExpressionAddress ComputationAddress 0x8(%rdx) (%rdx,%rcx) (%rdx,%rcx,4) 0x80(,%rdx,2) Carnegie Mellon Address Computation Examples ExpressionAddress ComputationAddress 0x8(%rdx)0xf000 + 0x80xf008 (%rdx,%rcx)0xf000 + 0x1000xf100 (%rdx,%rcx,4)0xf000 + 4*0x1000xf400 0x80(,%rdx,2)2*0xf000 + 0x800x1e080 %rdx0xf000 %rcx0x0100
31
Carnegie Mellon 31 Machine Programming I: Basics History of Intel processors and architectures C, assembly, machine code Assembly Basics: Registers, operands, move Arithmetic & logical operations
32
Carnegie Mellon 32 Carnegie Mellon Address Computation Instruction leaq Src, Dst (load effective address) Set Dst to address denoted by src address mode expression Uses Computing addresses without a memory reference E.g., translation of p = &x[i]; Computing arithmetic expressions of the form x + k*y k = 1, 2, 4, or 8 Example long m3(long x) { return x*3; } long m3(long x) { return x*3; } leaq (%rdi,%rdi,2), %rax # t = x+x*2 Assembly (gcc –Og –S m3.c)
33
Carnegie Mellon 33 Carnegie Mellon Some Arithmetic Operations Two Operand Instructions: addq Src,Dest Dest = Dest + Src subq Src,Dest Dest = Dest Src imulq Src,Dest Dest = Dest * Src salq Src,Dest Dest = Dest << Src Also called shlq sarq Src,Dest Dest = Dest >> Src Arithmetic shrq Src,Dest Dest = Dest >> Src Logical xorq Src,Dest Dest = Dest ^ Src andq Src,Dest Dest = Dest & Src orq Src,Dest Dest = Dest | Src No distinction between signed and unsigned int (why?)
34
Carnegie Mellon 34 Carnegie Mellon Some Arithmetic Operations One Operand Instructions incq DestDest = Dest + 1 decq DestDest = Dest 1 negq DestDest = Dest notq DestDest = ~Dest
35
Carnegie Mellon 35 Carnegie Mellon Arithmetic Expression Example long arith (long x, long y, long z) { long t1 = x+y; long t2 = z+t1; long t3 = x+4; long t4 = y * 48; long t5 = t3 + t4; long rval = t2 * t5; return rval; } long arith (long x, long y, long z) { long t1 = x+y; long t2 = z+t1; long t3 = x+4; long t4 = y * 48; long t5 = t3 + t4; long rval = t2 * t5; return rval; } leaq (%rdi,%rsi), %rax addq %rdx, %rax leaq (%rsi,%rsi,2), %rdx salq $4, %rdx leaq 4(%rdi,%rdx), %rcx imulq %rcx, %rax ret rax = t1 rax = t2 rdx = 3*y rdx = 48 *y = t4 rcx = x+4+t4 = t5 rax = t2*t5 RegisterUse(s) %rdi Argument x %rsi Argument y %rdx Argument z %raxReturn val
36
Carnegie Mellon 36 Machine Programming I: Summary History of Intel processors and architectures Evolutionary design leads to many quirks and artifacts C, assembly, machine code Low-level machine abstraction: program counter, registers, machine operations... Compiler must transform C statements into low-level machine abstraction Assembly Basics: Registers, operands, move, arithmetic C compiler will figure out different instruction combinations to carry out computation
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.