Presentation is loading. Please wait.

Presentation is loading. Please wait.

D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:

Similar presentations


Presentation on theme: "D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:"— Presentation transcript:

1 D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe: A prelude to HERSCHEL and ALMA, 27-29 Oct, 2004, Paris Starbursts and ULIRGs

2 IR Galaxies: SEDs, LF (vs.z) Origin & Evolution of LIGs/ULIGs ULIGs: Superstarbursts and AGN ULIGs and QSOs OUTLINE IRAS - ISO - SCUBA - MAMBO (1984) (1996) (1997) (1999) z <0.3 z < 1.5 z < 5-6 ? SIRTF+AstroF - Herschel - ALMA (2003) (2006) (2008) (2010) z = 0-10?

3 Two IRAS All-Sky Surveys: IRAS R evised B right G alaxy S ample (RBGS:S 60 >5.24Jy) 638 Galaxies IRAS 1-Jy ULIG Sample (1-Jy: S 60 >1.0Jy,L ir > 10 12 L sun ) 118 Galaxies

4 Radio-to-UV SEDs of IRAS Selected Galaxies “Infrared Galaxies”  ( f ) IR / ( f ) opt > 1 638 Galaxies: f ( (60  m) > 5 Jy 118 ULIGs: f ( (60  m) > 1 Jy

5 Galaxy Luminosity Functions L FIR high luminosity tail:   L -2.35  (z)  (1+z) 5-8  3.5  (z <0.2) ~ 0.008 deg -2 slope = -1

6 The Hubble Deep Field (The opt/UV view) SCUBA 850  m The FIR/submm view

7 kindly provided by Helmut Dannerbauer

8 ULIGs @ z ~ 2 – 4 f 850 ~ 1 – 10 mJy m K ~ 20 – 24 m I ~ 24 – 30 m B ~ 26 – 33 ULIGs at High Redshift

9 Galaxy Luminosity Functions Z=0.40 Z=0.80 Z=0.13 Z=0.045 Z ~2.4 slope= -1

10 The “Star Formation Rate” versus Redshift

11 Luminous Infrared Galaxies The Origin and Evolution of Strong Interactions/Mergers of Molecular Gas-rich Disks

12 IRAS RBGS Optical Images of LIGs Log L IR = 11.66 - 11.99 Ishida, ApJL (2003 ) Log L IR = 11.10 - 11.48

13

14 IRAS RBGS Optical Images of LIGs Ishida, ApJL (2003 ) Log L IR = 11.49 - 11.99

15 IRAS RBGS Conclusion: In the range log(L ir /L o ) = 11.6 - 12.0, LIGs are in the final stages of merging, with a typical “pre-merger” time of t m < 3 x 10 8 years

16 IRAS RBGS Optical Images Log L IR = 12.00 - 12.51 Ishida, ApJL (2003)

17 IRAS RBGS Nuclear Separation vs. L ir

18 IRAS RBGS Conclusion : At log(L ir /L o ) > 12.0, > 40% of ULIGs have merged and the remainder will merge within a time of t m < 10 8 years

19 Summary Properties of IRAS RBGS+1Jy ULIG samples Log(L IR /L sun ) = 11.40 - 12.70 Sources are predominantly strongly interacting/merging spiral pairs  M K  Tot ~ 2 L K * M K pair ratio < 3:1 L IR pair ratio < 5:1 Pairs are predominantly late type spirals (Sb, Sc) Both components are molecular gas rich (M H2 ~ 10 9 - 10 M sun )  pair separation   as  pair L IR   ( Evidence for buildup of dense nuclear gas concentrations ) ( Evidence for creation of luminous Seyfert 1 nuclei) ( Evidence for S + S  E )

20 L CO N=53 L HCN

21 L IR /L HCN L IR /L CO L HCN L CO

22 Gao et al. Mirabel et al. Hibbard et al. Ponman et al. Log (L IR /L sun ) = 11.01 Int. Class = 3

23 UGC 83038 = Mrk 231 Log (L IR /L sun ) = 12.57 Int. Class = 4 Sanders et al. Hutchings & Neff Scoville et al. Surace et al

24 Summary Nuclear Molecular Gas Concentrations @ r < 700 pc General Results for ULIGs M nuc /M tot = 40 – 100 % M nuc = 1 – 3 x 10 10 M sun   (H 2 )  ~ 0.65 – 2 x 10 10 M sun  n (H 2 )  spherical ~ 130 – 400 cm -3 => ff nuc ~ 1 ( for a population of W3-like GMCs )  N (H 2 )  spherical ~ 10 23.2 – 23.7 cm -2 OVRO Interferometer Bryant, Scoville et al. 1993-9

25 Summary Optical Spectral Classification of LIGs+ULIGs Veilleux, Kim & Sanders (1998)KPNO 4m + UH 2.2m

26 1-D surface brightness radial profiles

27 Summary Host Properties of 1-Jy Sample of ULIGs Log(L IR /L sun ) > 12.0 redshift range: 0.018 – 0.271  M K  Tot ~ 2.7 L K *  M R  Tot ~ 2.5 L R * ~ 1/3 are E (r 1/4 -law profile @ r ~ 1.5 – 6.0 kpc) ~ 1/3 are E/Sp ~ 1/3 are “amorphous/chaotic”

28 Beyond the IRAS RBGS Sample … Question: What happens Next ?

29 A Plausible Scenario … LIG ULIG QSO

30 Evolution of Fine Structure in a “post-merger” simulation Barnes (2002)

31 Evolution of the Luminosity Profile for a “Post-Merger” Remnant Barnes (2002)  R = 27.5 mag arcsec -2 (kpc)

32 Near-IR Imaging of PGQSOs with Gemini-North Hopuka’a AO System (Olivier Guyon 2002) PG 1411+442 40x40 kpc “Raw Image” (resolution ~0.12 arcsec) PSF-subtracted image ~24 mag H arcsec -2 (3  )

33 NIR-AO Imaging of a Complete Sample of 38 PGQSOs Olivier Guyon, PhD Thesis, 2002 Raw (H-band) -psf - Gemini-N 8m

34 NIR-AO Imaging of a Complete Sample of 38 PGQSOs Olivier Guyon, PhD Thesis, 2002 Raw (H-band) -psf - Mean Radio-to-Xray SED of PGQSOs

35 Warped Disk Model Sanders, Phinney et al. (1989)

36 PGQSOs typically have dominant spheroids + a moderate disk component (central bars, mini-spirals, …) PGQSO hosts typically have faint tidal debris

37 “SFR + MBH” versus Redshift

38 Good evidence for S + S -> E merger sequence for ULIGs Good evidence for creation of luminous Seyfert 1 nuclei in ULIGs Confirmation of strong evolution with z in the ULIG population ISOPHOT Deep Field sources consistent with LIG/ULIGs (z ≈ 0 -1.5) ?? SCUBA Deep Field sources consistent with LIG/ULIGs (z ≈2 - 4)?? Summary [“SFR” vs. z ] opt+UV  [“SFR” vs. z ] IRAS+ISO+SCUBA High-z ULIGs may represent epoch of spheroid / MBH formation


Download ppt "D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:"

Similar presentations


Ads by Google