Presentation is loading. Please wait.

Presentation is loading. Please wait.

Statistical Group Differences in Anatomical Shape Analysis using Hotelling T 2 metric February 2006, SPIE Medical Imaging 2006 Funding provided by UNC.

Similar presentations


Presentation on theme: "Statistical Group Differences in Anatomical Shape Analysis using Hotelling T 2 metric February 2006, SPIE Medical Imaging 2006 Funding provided by UNC."— Presentation transcript:

1 Statistical Group Differences in Anatomical Shape Analysis using Hotelling T 2 metric February 2006, SPIE Medical Imaging 2006 Funding provided by UNC Neurodevelopmental Disorders Research Center HD 03110, NIH Roadmap for Medical Research NAMIC U54 EB005149-01, NIH NIBIB P01 EB002779, EC-funded BIOMORPH 95-0845. We are thankful to S Pizer, S Joshi for valuable discussions, to C Brechbuehler for providing the initial parameterization software and to J Levitt, M Shenton, Harvard Medical School for providing the caudate datasets. REFERENCES [1] C. Brechbühler, G. Gerig, and O. Kübler,Parameterization of closed surfaces for 3-D shape description,Comp. Vision, Graphics, and Image Proc. 61, pp. 154-170, 1995. [2] M. Styner, J. Lieberman, R. McClure, D. Weingberger, D. Jones, and G. Gerig, Morphometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors, PNAS, 102, pp. 4872-4877, March 2005. [3] D. Pantazis, R. Leahy, T. Nichol, and M. Styner, Statistical surface-based morphometry using a non-parametric approach,in Int. Symposium on Biomedical Imaging(ISBI), pp. 1283-1286, April 2004. [4] Y. H. Y Benjamini, Controlling false discovery rate: A practical and powerful approach to multiple testing,Stat. Soc. Ser. B (57), pp. 289-300, 1995. [5] L. Shen, J. Ford, F. Makedon, and A. Saykin, Hippocampal shape analysis surface-based representation and classification, in SPIE-Medical Imaging, 2003. SPHARM - PDM Fig. 2: Illustration of SPHARM correspondence. Left: Correspondence shown on the first order ellipsoid. Middle: Selected corresponding points shown on caudates. Right: Quality Control visualization of  - correspondence. Summary: We present a comprehensive, local shape analysis framework for brain structures founded on the SPHARM-PDM shape representation and local statistical tests. Novel is the use of the Hotelling T 2 group difference metric for shape differences as well as False Discovery Rate (FDR) for the correction of multiple comparisons in shape studies. The frameworks has been already applied in several studies at UNC and other collaborators. Quantitative morphologic assessment of individual brain structures Routine: Volume, intuitive global atrophy/dilation due to illness This work: Localization of structural changes using SPHARM-PDM Related work: Landmarks (Bookstein), Deformation fields(Joshi, Davatzikos, Thompson), M-rep (Pizer, Styner), PDM (Cootes, Taylor) Basic problems: Correspondence, Statistics, Single vs Multi-structure Introduction Martin Styner 1,2, Ipek Oguz 1,2, Shun Xu 1,2, Dimitrios Pantazis 3, Guido Gerig 1,2 1 Department of Computer Science, 2 Department of Psychiatry, University of North Carolina at Chapel Hill, NC 3 Signal & Image Processing Institute, University of Southern California, Los Angeles, CA Fig. 1: Routine structural analysis is based on global volumetric analysis. We suggest to additionally perform shape analysis in order to localize structural changes. Fig. 4: Results on example caudate study. Left: Mean difference. Middle: Covariance. Right: Hypothesis Testing. Fig. 3: Left: Permutation scheme for p-value computation and FWER correction via extrema statistic[3]. Right: Comparison between template based and Hotelling T 2 based analysis in a hippocampus schizophrenia study. Statistical Analysis Surfaces aligned, scaling normalized with correspondence Shape difference metric between 2 groups, e.g., autism vs. controls Prior template based analysis using distance magnitude[2], local univariate analysis, quite well understood, template bias New template free analysis using directly surface coordinates, robust Hotelling T 2 2 sample metric, multivariate analysis (x,y,z) Univariate testing has lower sensitivity than multivariate approach (see figure 3, hippocampus schizophrenia study) Shape difference comparison using permutation tests No Gaussian assumption necessary, but time consuming Multiple comparison problem: 1000 - 4000 tests, correction needed No correction: Optimistic estimate Permutation based Family Wise Error Rate correction[3], comparable to Bonferroni, pessimistic, no false negative control False Discovery Rate[4] powerful in-between approach, fixed expected rate of false positives in detected regions 2 main results from the statistical analysis: Descriptive statistics: Mean difference and covariance information Significance maps: Regions of significant differences Both are necessary: small significant changes (below voxel-size level) as seen in the descriptive statistics may not be very stable Single program for whole testing procedure + Visualization tool Conclusions SPHARM: hierarchical, global, parametric shape description [1] Spherical topology needed: preprocessing step Parameterization: area-ratio preserving, distortion minimizing Optimization step: Time consuming, sparse matrix optimization Correspondence based on spherical ( ,  ) parameterization Alignment using SPHARM first order ellipsoid Ill-defined in presence of rotational symmetry Compares favorably to human expert landmarks Compares well with other methods for shape hypothesis analysis Ill-defined regarding flips of the coordinate axes Correct flips regarding template Icosahedron subdivision of parameterization => SPHARM-PDM Rigid-body Procrustes alignment to predefined template Scaling normalization: None vs. head size normalization using intra- cranial cavity volume (ICV). Direct scaling of the surface coordinates. If correspondence not optimal, additional optimization step is needed, e.g., using Minimum Description Length (MDL) Also used by others[5] in structural shape analysis Comprehensive, local shape analysis framework Applied in several studies at UNC/BWH/GeorgiaTech/UIUC/Utah Main limitation is necessity of spherical topology Open source implementation UNC Neurolib: www.ia.unc.edu/dev Next: inclusion subject covariates, end user tools National Alliance for Medical Image Computing


Download ppt "Statistical Group Differences in Anatomical Shape Analysis using Hotelling T 2 metric February 2006, SPIE Medical Imaging 2006 Funding provided by UNC."

Similar presentations


Ads by Google