Download presentation
Presentation is loading. Please wait.
Published byJessica Eaton Modified over 9 years ago
1
LABORATOIRE NATIONAL CANADIEN POUR LA RECHERCHE EN PHYSIQUE NUCLÉAIRE ET EN PHYSIQUE DES PARTICULES Propriété d’un consortium d’universités canadiennes, géré en co-entreprise à partir d’une contribution administrée par le Conseil national de recherches Canada CANADA’S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada In-trap decay spectroscopy for 2 decay experiments Thomas Brunner for the TITAN-EC collaboration Outline: Motivation: Neutrinoless double beta decay EC-BR setup at TITAN Status and first experimental results
2
Double decay and m Half life> 10 17 years ( 76 Ge) 2 double - decay Standard model
3
Double decay and m 3 Half life> 10 17 years ( 76 Ge) 2 double - decay Standard model 0 double - decay Lepton number violation Half life> 1.9x10 25 years [1] ( 76 Ge)!!! Majorana - Neutrino New physics [1] C.E. Aalseth et al., Phys. Rev. D65(2002)092007 [2] S.R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52(2002)115 Some decay experiments GERDA, CUORE, CUORICINO, COBRA, MOON, EXO
4
Double decay and m 4 Half life> 10 17 years ( 76 Ge) 2 double - decay Standard model 0 double - decay Lepton number violation Half life> 1.9x10 25 years [1] ( 76 Ge)!!! Majorana - Neutrino New physics If observed: [1] C.E. Aalseth et al., Phys. Rev. D65(2002)092007 [2] S.R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52(2002)115 Some decay experiments GERDA, CUORE, CUORICINO, COBRA, MOON, EXO
5
Double decay and m 5 Half life> 10 17 years ( 76 Ge) 2 double - decay Standard model 0 double - decay Lepton number violation Half life> 1.9x10 25 years [1] ( 76 Ge)!!! Majorana - Neutrino New physics If observed: [1] C.E. Aalseth et al., Phys. Rev. D65(2002)092007 [2] S.R. Elliott and P. Vogel, Annu. Rev. Nucl. Part. Sci. 52(2002)115 Some decay experiments GERDA, CUORE, CUORICINO, COBRA, MOON, EXO and described in same theoretical framework, but different matrix elements
6
Theoretical models to calculate M Interacting Boson Model [3] Nuclear Shell Model [4] pn Quasiparticle Random Phase Approximation [5] But… M needed with an uncertainty of less than 20% [6] Calculated M vary by a factor 2-5 [3] J. Barea and F. Iachello, Phys. Rev. C 79(2009)044301 [4] E. Caurrier et al., Nucl. Phys. A 654(1999)973c [5] V. Rodin et al., Phys. Rev. C 68(2003)044302 [6] V.M. Gehman and S.R. Elliott, J. Phys. G 34(2007)667 0 matrix element [6] and ref. therein M 76 Ge
7
0 matrix element [6] and ref. therein Measure M 2 to benchmark theory M 76 Ge Theoretical models to calculate M Interacting Boson Model [3] Nuclear Shell Model [4] pn Quasiparticle Random Phase Approximation [5] But… M needed with an uncertainty of less than 20% [6] Calculated M vary by a factor 2-5 [3] J. Barea and F. Iachello, Phys. Rev. C 79(2009)044301 [4] E. Caurrier et al., Nucl. Phys. A 654(1999)973c [5] V. Rodin et al., Phys. Rev. C 68(2003)044302 [6] V.M. Gehman and S.R. Elliott, J. Phys. G 34(2007)667
8
Theoretical benchmark Single-State Dominance hypothesis Transition via lowest 1 + state in intermediate nucleus accounts for entire M D. Fang et al., Rhys. Rev. C 81(2010)037303 Knowledge of EC and - BR can be used to benchmark the theoretical framework of decays S.K.L. Sjue et al., Phys. Rev. C 78(2008)064317 But: Difficult measurement due to a small EC branch and difficult X-ray signatures High background due to dominating beta decay and possible bremsstrahlung Isobaric contamination
9
Theoretical benchmark Single-State Dominance hypothesis Transition via lowest 1 + state in intermediate nucleus accounts for entire M D. Fang et al., Rhys. Rev. C 81(2010)037303 Knowledge of EC and - BR can be used to benchmark the theoretical framework of decays S.K.L. Sjue et al., Phys. Rev. C 78(2008)064317 But: Difficult measurement due to a small EC branch and difficult X-ray signatures High background due to dominating beta decay and possible bremsstrahlung Isobaric contamination Novel technique at TITAN
10
X-ray detector Storage and detection Penning trap 6 T magnet Trap electrodes Beta detector (PIPS) 10 5 ions injected High efficient trapping Ion injection A+A+ A+A+ Penning trap TITAN-EC technique TITAN Facility TRIUMF Ion Trap for Atomic and Nuclear science Potential z
11
X-ray detector Storage and detection Penning trap 6 T magnet Trap electrodes Beta detector (PIPS) 10 5 ions injected High efficient trapping Ion injection A+A+ A+A+ Penning trap TITAN-EC technique Silicon detector for -decay measurements X-ray detector
12
Storage and detection Penning trap 6 T magnet Trap electrodes Beta detector (PIPS) 10 5 ions injected High efficient trapping X-ray detector Ion injection Novel method: Backing free Isobarically pure sample Spatial separation of - and X-ray detection TITAN-EC technique Silicon detector for -decay measurements
13
X-ray detector Storage and detection Penning trap 6 T magnet Trap electrodes Beta detector (PIPS) 10 5 ions injected High efficient trapping X-ray detector Ion injection Novel method: Backing free Isobarically pure sample Spatial separation of - and X-ray detection Ø5 mm 5 kV4.7 kV5 kV B max ~ 3T TITAN-EC technique Silicon detector for -decay measurements
14
Thomas Brunner14 INPC July 6, 2010 Monitoring Si detector RFQ PIPS detection Ge detector X/ -ray detection LeGe detector X-ray detection Systematic studies with 124, 126 Cs Injection of Cs (~1ms) Storage of Cs (25ms) Observation of decays Ejection of Cs (1ms) The trap is kept open to empty completely Empty trap (25ms) Background measurement V z 124 Cst ½ = (30.8 ± 0.5) s 126 Cst ½ = (98.4 ± 1.2) s
15
Thomas Brunner15 INPC July 6, 2010 RFQ PIPS Passivated Implanted Planar Silicon detection Ge detector X/ -ray detection Observation of 124 Cs EC X-rays Xe X-ray lines: due to 124 Cs EC Cs X-ray lines: probably dominant due to 124 Ba contamination and decay of 124m Cs LeGe detector X-ray detection ~ 0.1% geo ~ 2.5 T B field at detector position 124 Ba (11.0 min) 124 Cs (30.8 s) 124m Cs (6.3 s) 124 Xe EC + EC +
16
Thomas Brunner16 INPC July 6, 2010 RFQ PIPS Passivated Implanted Planar Silicon detection Ge detector X/ -ray detection Observation of 124 Cs EC X-rays Xe X-ray lines: due to 124 Cs EC Cs X-ray lines: probably dominant due to 124 Ba contamination and decay of 124m Cs 89.5 keV & 96.6keV 124 Cs isomer LeGe detector X-ray detection ~ 0.1% geo ~ 2.5 T B field at detector position 124 Ba (11.0 min) 124 Cs (30.8 s) 124m Cs (6.3 s) 124 Xe EC + EC +
17
Thomas Brunner17 INPC July 6, 2010 RFQ PIPS Passivated Implanted Planar Silicon detection Ge detector X/ -ray detection Observation of 124 Cs EC X-rays Xe X-ray lines: due to 124 Cs EC Cs X-ray lines: probably dominant due to 124 Ba contamination and decay of 124m Cs 89.5 keV & 96.6keV 124 Cs isomer Xe X-ray K lines Cs X-ray lines LeGe detector X-ray detection ~ 0.1% geo ~ 2.5 T B field at detector position 124 Ba (11.0 min) 124 Cs (30.8 s) 124m Cs (6.3 s) 124 Xe EC + EC +
18
Thomas Brunner18 INPC July 6, 2010 Monitoring PIPS RFQ PIPS detection Ge detector X/ -ray detection LeGe detector X-ray detection Ge detector ~ 0.15% geo Outside vacuum vessel PIPS detector Si detector (500 m) on magentic field axis at exit of Penning trap – + time correlation 511 keV 491 keV 126 Cs 388 keV 126 Cs First time: + spectrum from 126 Cs ions stored inside the trap
19
Thomas Brunner19 INPC July 6, 2010 Monitoring PIPS RFQ PIPS detection Ge detector X/ -ray detection LeGe detector X-ray detection Ge detector ~ 0.15% geo Outside vacuum vessel PIPS detector Si detector (500 m) on magentic field axis at exit of Penning trap – + time correlation PIPS spectrum in coincidence with event spectrum in coincidence with + event
20
Thomas Brunner20 INPC July 6, 2010 Summary nuclear matrix elements needed for theoretical framework EC-BR measurement as benchmark experiment for theoretical description TITAN EBIT offers a novel approach for EC-BR measurements Backing free method Low background at X-ray detector – spatial separation of and X-ray detection Isobaric sample Successful storage of radioactive ions (long storage times: P < 10 -11 mbar) First observation of an Electron Capture decay in a Penning trap …for the future First EC branching ratio measurements with TITAN-EC summer 2011 ( 100 Tc) EC-BR program @ TITAN: 76 As 76 Ge, 82m Br 82 Se, 110 Ag 110 Pd, 114 In 114 Cd, 116 In 116 Cd, 128 I 128 Te
21
People/Collaborations U. of Manitoba McGill U. Muenster U. MPI-K GANIL Colorado School of Mines U. of Calgary U. of Windsor SFU UBC TU München Yale M. Brodeur, T. Brunner, J. Dilling, P. Delheij, S. Ettenauer, A. Gallant, M. Good, E. Mane, M. Pearson, V. Simon C. Andreoiu, D. Frekers, R. Krücken, I. Tanihata, K. Zuber … and the TITAN collaboration as well as A. Lapierre, D. Lunney, R. Ringle, V. Ryjkov, M. Smith and TRIUMF staff.
22
Thomas Brunner22 INPC July 6, 2010 Backup slides
23
Thomas Brunner23 INPC July 6, 2010 Basic ion trap concepts 3D confinement Penning trap Static electric quadrupole and magnetic field micromotion + macromotion Suited for manipulation techniques 3 harmonic oscillations Suited for precision experiments Paul trap Oscillating electric quadrupole field Basic Ion Trap Concepts
24
100 Tc production rate Hirschegg 18. Jan 2008 24 LaC 2 target with 50 A p beam Ta target with 70 A p beam Thanks to Marik Dombsky
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.