Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sentiment and Opinion Sep18, 2012 Analysis of Social Media Seminar William Cohen.

Similar presentations


Presentation on theme: "Sentiment and Opinion Sep18, 2012 Analysis of Social Media Seminar William Cohen."— Presentation transcript:

1 Sentiment and Opinion Sep18, 2012 Analysis of Social Media Seminar William Cohen

2 First assignment: due Friday Go to http://malt/mwhttp://malt/mw Create an account for yourself –use andrew id Go to your user page –Your real name & a link to your home page –Preferably a picture –Who you are and what you hope to get out of the class (Let me know if you’re just auditing) –Any special skills you have, research interests that you have, related projects you have been or might be working on, etc.

3 Outline Announcements Recap –With a little more on word senses More discussion: what exactly is subjectivity, sentiment and polarity? –Annotating a corpus for subjectivity –Fine-grained sentiment for reviews More distinctions: –Agreement and discourse 3

4 In our previous episode… 4

5 5 Motivations: sentiment common… Analysis : modeling & learning Communication, Language People Networks Social Media

6 6 …and important… Product review mining: What features of the ThinkPad T43 do customers like and which do they dislike? Review classification: Is a review positive or negative toward the movie? Tracking sentiments toward topics over time: Is anger ratcheting up or cooling down? Etc. [These are all ways to summarize one sort of content that is common on blogs, bboards, newsgroups, etc. –W]

7 …and non-trivial 7

8 What units do we attach sentiment to? Individual words (“nice”, “comfortable”) Phrases (“slow service”) Sentences? Documents? … ? 8

9 9ICWSM 20089 Hatzivassiloglou & McKeown 1997 Build a graph of adjectives linked by the same or different semantic orientation (determined by conjunctions)… nice handsome terrible comfortable painful expensive fun scenic

10 10ICWSM 200810 Hatzivassiloglou & McKeown 1997 …and a clustering algorithm partitions the adjectives into two subsets nice handsome terrible comfortable painful expensive fun scenic slow +

11 Jan - ICWSM 200811 Word senses Senses

12 Jan - ICWSM 200812 Senses Is this polar?

13 Jan - ICWSM 200813 Non-subjective senses of brilliant 1.Method for identifying brilliant material in paint - US Patent 7035464 2.In a classic pasodoble, an opening section in the minor mode features a brilliant trumpet melody, while the second section in the relative major begins with the violins.

14 ICWSM 200814 Subjective Sense Examples His alarm grew Alarm, dismay, consternation – (fear resulting form the awareness of danger) –Fear, fearfulness, fright – (an emotion experiences in anticipation of some specific pain or danger (usually accompanied by a desire to flee or fight)) He was boiling with anger Seethe, boil – (be in an agitated emotional state; “The customer was seething with anger”) –Be – (have the quality of being; (copula, used with an adjective or a predicate noun); “John is rich”; “This is not a good answer”) SNSN SNSN

15 ICWSM 200815 Objective Sense Examples The alarm went off Alarm, warning device, alarm system – (a device that signals the occurrence of some undesirable event) –Device – (an instrumentality invented for a particular purpose; “the device is small enough to wear on your wrist”; “a device intended to conserve water” The water boiled Boil – (come to the boiling point and change from a liquid to vapor; “Water boils at 100 degrees Celsius”) –Change state, turn – (undergo a transformation or a change of position or action)

16 ICWSM 200816 Objective Senses: Observation We don’t necessarily expect phrases/sentences containing objective senses to be objective –Will someone shut that darn alarm off? –Can’t you even boil water? Subjective, but not due to alarm and boil

17 ICWSM 200817 Objective Sense Definition When the sense is used in a text or conversation, we don’t expect it to express subjectivity and, if the phrase/sentence containing it is subjective, the subjectivity is due to something else.

18 18 Later/related work: –LIWC, General Inquirer, other hand-built lexicons –Turney & Littman, TOIS 2003: Similar performance with 100M word corpus and PMI – higher accuracy better if you allow abstention on 25% of the “hard” cases. –Kamps et al, LREC 04: Determine orientation by graph analysis of Wordnet (distance to “good”, “bad” in graph determined by synonymy relation) –SentiWordNet, Esuli and Sebastiani, LREC 06: Similar to Kamps et al, also using a BOW classifier and WordNet glosses (definitions). Hatzivassiloglou & McKeown 1997

19 What units do we attach sentiment to? Individual words (“nice”, “comfortable”) Phrases (“slow service”) Sentences? Documents? … ? 19

20 20 Turney 2002 Goal: classify reviews as “positive” or “negative”. –Epinions “[not] recommended” as given by authors. Method: –Find (possibly) meaningful phrases from review (e.g., “bright display”, “inspiring lecture”, …), based on POS patterns, like ADJ NOUN –Estimate “semantic orientation” of each candidate phrase Based on pointwise mutual information: Altavista counts of phrase’s cooccurrence with “excellent”, “poor” –Assign overall orentation of review by averaging orentation of the phrases in the review

21 21

22 22 Pang et al EMNLP 2002

23 23 Pang & Lee EMNLP 2004

24 24 Methods: 2002 Movie review classification as pos/neg. Method one: count human-provided polar words (sort of like Turney): –Eg, “love, wonderful, best, great, superb, still, beautiful” vs “bad, worst, stupid, waste, boring, ?, !” gives 69% accuracy on 700+/700- movie reviews Method two: plain ‘ol text classification –Eg, Naïve Bayes bag of words: 78.7; SVM-lite “set of words”: 82.9 was best result –Adding bigrams and/or POS tags doesn’t change things much.

25 25 Pang & Lee EMNLP 2004 Can you capture the discourse in the document? –Expect longish runs of subjective text and longish runs of objective text. –Can you tell which is which? Idea: –Classify sentences as subjective/objective, based on two corpora: short biased reviews, and IMDB plot summaries. –Smooth classifications to promote longish homogeneous sections. –Classify polarity based on the K “most subjective” sentences

26 What units do we attach sentiment to? Individual words (“nice”, “comfortable”) Phrases (“slow service”) Sentences? Documents? … ? 26

27 Outline Announcements Recap –With a little more on word senses More discussion: what exactly is subjectivity, sentiment and polarity? –Annotating a corpus for subjectivity –Fine-grained sentiment for reviews More distinctions: –Agreement and discourse 27

28 Manual and Automatic Subjectivity and Sentiment Analysis Jan Wiebe Josef Ruppenhofer Swapna Somasundaran University of Pittsburgh

29 29 Everyone knows that dragons don't exist. But while this simplistic formulation may satisfy the layman, it does not suffice for the scientific mind. The School of Higher Neantical Nillity is in fact wholly unconcerned with what does exist. Indeed, the banality of existence has been so amply demonstrated, there is no need for us to discuss it any further here. The brilliant Cerebron, attacking the problem analytically, discovered three distinct kinds of dragon: the mythical, the chimerical, and the purely hypothetical. They were all, one might say, nonexistent, but each nonexisted in an entirely different way... - Stanislaw Lem, “The Cyberiad”

30 30 Preliminaries What do we mean by subjectivity? The linguistic expression of somebody’s emotions, sentiments, evaluations, opinions, beliefs, speculations, etc. –Wow, this is my 4th Olympus camera. –Staley declared it to be “one hell of a collection”. –Most voters believe that he's not going to raise their taxes

31 31 Corpus Annotation Wiebe, Wilson, Cardie 2005 Annotating Expressions of Opinions and Emotions in Language Leaving aside what’s possible, what sort of inferences about sentiment, opinion, etc would we like to be able to make?

32 32 Overview Fine-grained: expression-level rather than sentence or document level –The photo quality was the best that I have seen in a camera. Annotate –expressions of opinions, evaluations, emotions –material attributed to a source, but presented objectively

33 33 Overview Fine-grained: expression-level rather than sentence or document level –The photo quality was the best that I have seen in a camera. Annotate –expressions of opinions, evaluations, emotions, beliefs –material attributed to a source, but presented objectively

34 34 Overview Opinions, evaluations, emotions, speculations are private states. They are expressed in language by subjective expressions. Private state: state that is not open to objective observation or verification. Quirk, Greenbaum, Leech, Svartvik (1985). A Comprehensive Grammar of the English Language.

35 35 Overview Focus on three ways private states are expressed in language –Direct subjective expressions –Expressive subjective elements –Objective speech events

36 36 Direct Subjective Expressions Direct mentions of private states The United States fears a spill-over from the anti-terrorist campaign. Private states expressed in speech events “I fear electoral fraud,” Tsvangirai said. Fear is a private state Fear is a private state but not of the author

37 37 Direct Subjective Expressions Direct mentions of private states The United States fears a spill-over from the anti-terrorist campaign. Private states expressed in speech events “We foresaw electoral fraud but not daylight robbery,” Tsvangirai said. This implies a private state, so it’s not direct.. Fear is a private state

38 38 Expressive Subjective Elements [ Banfield 1982 ] “We foresaw electoral fraud but not daylight robbery,” Tsvangirai said The part of the US human rights report about China is full of absurdities and fabrications Compare: “ We foresaw difficulties with the electoral process but not to this extent”, Tsvangirai said. The part of the US human rights report about China contains many statements that we were unable to verify. Understood as implying certain mental state

39 39 Objective Speech Events Material attributed to a source, but presented as objective fact The government, it added, has amended the Pakistan Citizenship Act 10 of 1951 to enable women of Pakistani descent to claim Pakistani nationality for their children born to foreign husbands. [What does this have to do with opinion? You need it to sort out who has opinions about what… -W]

40 An example… 40

41 41 Nested Sources “The report is full of absurdities,’’ Xirao-Nima said the next day. (Writer)

42 42 Nested Sources “The report is full of absurdities,’’ Xirao-Nima said the next day. (Writer, Xirao-Nima)

43 43 Nested Sources “The report is full of absurdities,’’ Xirao-Nima said the next day. (Writer Xirao-Nima)

44 44 “The report is full of absurdities,” Xirao-Nima said the next day. Objective speech event anchor: the entire sentence source: implicit: true Direct subjective anchor: said source: intensity: high expression intensity: neutral attitude type: negative target: report Expressive subjective element anchor: full of absurdities source: intensity: high attitude type: negative Attributes: The anchor is the linguistic expression—the stretch of text—that tells us that there is a private state. [Where to ‘hang’ the annotation’ -W] The source is the person to whom the private state is attributed. Note that this can be a chain of people. The target is the content of the private state or what the private state is about. Attitude type: If not specified, it is to be understood as neutral but can be set to positive or negative as required. Intensity records the intensity of “the private state as a whole.”

45 Another example… 45

46 ICWSM 200846 “The US fears a spill-over’’, said Xirao-Nima, a professor of foreign affairs at the Central University for Nationalities.

47 ICWSM 200847 “The US fears a spill-over’’, said Xirao-Nima, a professor of foreign affairs at the Central University for Nationalities. (Writer)

48 ICWSM 200848 “The US fears a spill-over’’, said Xirao-Nima, a professor of foreign affairs at the Central University for Nationalities. (writer, Xirao-Nima)

49 ICWSM 200849 “The US fears a spill-over’’, said Xirao-Nima, a professor of foreign affairs at the Central University for Nationalities. (writer, Xirao-Nima, US)

50 ICWSM 200850 “The US fears a spill-over’’, said Xirao-Nima, a professor of foreign affairs at the Central University for Nationalities. (writer, Xirao-Nima, US) (writer, Xirao-Nima) (Writer)

51 ICWSM 200851 Objective speech event anchor: the entire sentence source: implicit: true Objective speech event anchor: said source: Direct subjective anchor: fears source: intensity: medium expression intensity: medium … “The US fears a spill-over’’, said Xirao-Nima, a professor of foreign affairs at the Central University for Nationalities.

52 52 Corpus www.cs.pitt.edu/mqpa/databaserelease (version 2)www.cs.pitt.edu/mqpa/databaserelease English language versions of articles from the world press (187 news sources) Themes of the instructions: –No rules about how particular words should be annotated. –Don’t take expressions out of context and think about what they could mean, but judge them as they are used in that sentence. Kappa around 0.7 – 0.8.

53 53 Reasons for fine-grain annotation and analysis Turney, Pang et al: document D is about a known product P D, sentiment refers to P D. Life is more complicated: –“The part of the US human rights report about China is full of absurdities and fabrications”: What is “absurd & fabricated”? The part, the US, the report, or China? For sentiment about products we want to know what is good or bad: there are usually tradeoffs –Huge screen  very heavy –Very fast  really expensive

54 Outline Announcements Recap –With a little more on word senses More discussion: what exactly is subjectivity, sentiment and polarity? –Annotating a corpus for subjectivity –Fine-grained sentiment for reviews More distinctions: –Agreement and discourse 54

55 55

56 ICWSM 200856 Hu & Liu 2004 Mining Opinion Features in Customer Reviews Here: explicit product features only, expressed as nouns or compound nouns Use association rule mining technique rather than symbolic or statistical approach to terminology Extract associated items (item-sets) based on support (>1%) I think this technique basically amounts to taking frequent ngrams, after they do the pruning - W Sample- one of many papers

57 ICWSM 200857 Hu & Liu 2004 Feature pruning –compactness “I had searched for a digital camera for 3 months.” “This is the best digital camera on the market” “The camera does not have a digital zoom” –redundancy/overlap manual ; manual mode; manual setting Feature expansion –For sentences with opinion words and no features, add NP closest to each opinion word

58 ICWSM 200858 Hu & Liu 2004 For sentences with frequent feature, extract nearby adjective as “effective opinion” for Based on opinion words, gather infrequent features (N, NP nearest to an opinion adjective) –The salesman was easy going and let me try all the models on display.

59 ICWSM 200859 Hu & Liu 2004 Semantic orientation of words –Propogate labels for a set of 30 seeds through WordNet using synonymy and antonymy Opinion sentences: opinion word + feature Semantic orientation of sentences –Flip word polarity if there are nearby negations –Go with the majority of opinion words –Break ties with majority of words that are part of “effective opinions” i.e., adjective closest to a feature

60 ICWSM 200860 Hu & Liu 2004 Summary: –Feature identification: 72-80% recall/precision on 500 reviews from five domains. –Opinion sentence extraction (opinion word + feature): 60-80% recall/precision –Sentence-level orientation accuracy: 73-95% Comment: 80% on each step does not mean you’re done… -W

61 61

62 Outline Announcements Recap –With a little more on word senses More discussion: what exactly is subjectivity, sentiment and polarity? –Annotating a corpus for subjectivity –Fine-grained sentiment for reviews More distinctions: –Agreement and discourse 62

63 63 Everyone knows that dragons don't exist. But... - Stanislaw Lem, “The Cyberiad”

64 64 (General) Subjectivity Types [Wilson 2008] Other (including cognitive) Note: similar ideas: polarity, semantic orientation, sentiment

65 ICWSM 200865 PDTB [In that suit, the SEC accused Mr. Antar of engaging in a "massive financial fraud" to overstate the earnings of Crazy Eddie, Edison, N.J., over a three-year period. ARG1] IMPLICIT_CONTRAST [ Through his lawyers, Mr. Antar has denied allegations in the SEC suit and in civil suits previously filed by shareholders against Mr. Antar and others. ARG2] Contrast between the SEC accusing Mr. Antar of something, and his denying the accusation

66 66 Subjectivity In that suit, the SEC [[accused SENTIMENT- NEG] Mr. Antar of engaging in a "massive financial fraud" to overstate the earnings of Crazy Eddie, Edison, N.J. ARGUING-POS], over a three-year period. Through his lawyers, Mr. Antar [has denied AGREE-NEG] allegations in the SEC suit and in civil suits previously filed by shareholders against Mr. Antar and others. Two attitudes combined into one large disagreement between two parties

67 ICWSM 200867 Subjectivity In that suit, the SEC [[accused SENTIMENT-NEG] Mr. Antar of engaging in a "massive financial fraud" to overstate the earnings of Crazy Eddie, Edison, N.J. ARGUING-POS], over a three-year period. Through his lawyers, Mr. Antar [has denied AGREE- NEG] allegations in the SEC suit and in civil suits previously filed by shareholders against Mr. Antar and others. Subjectivity: arguing-pos and agree-neg with different sources; Hypothesis: common with contrast. Help recognize the implicit contrast.

68 68

69 69 George Orwell

70 70

71 71

72 72

73 73

74 Where do we look for…? Sentiment/Subjectivity Individual words (“nice”, “comfortable”) Phrases (“slow service”) Sentences Documents Genres –RottenTomatos vs IMBD plot summaries Coherence Between words –Cooccurence –Relations in WordNet Between sentences –Proximity –Discourse structure Between documents –Hyperlinks, references to entities –Agreement/disagreement 74


Download ppt "Sentiment and Opinion Sep18, 2012 Analysis of Social Media Seminar William Cohen."

Similar presentations


Ads by Google