Presentation is loading. Please wait.

Presentation is loading. Please wait.

A simple analytical equation to calculate the atmospheric drag during aerobraking campaigns. Application to Mars. François Forget & Michel Capderou Laboratoire.

Similar presentations


Presentation on theme: "A simple analytical equation to calculate the atmospheric drag during aerobraking campaigns. Application to Mars. François Forget & Michel Capderou Laboratoire."— Presentation transcript:

1 A simple analytical equation to calculate the atmospheric drag during aerobraking campaigns. Application to Mars. François Forget & Michel Capderou Laboratoire de Météorologie Dynamique, CNRS 14/12/2010 1

2 2 Atmospheric drag and velocity change Δv during an orbital pass through the atmosphere

3 Coupling an orbitography numerical model and an atmospheric model. Here: Ixion orbitography (Capderou 2005) http://climserv.ipsl.polytechnique.fr/ixion.html Mars Climate database (Forget et al. 2006) “Mars aerobraking simulator”

4 Example : Delta V during a 200 sols (1314 orbits) “drag compensated” aerobraking campaign - MGS like shape - Inclination = 75° - Excentricity = 0.4 - Initial conditions: Ls=0° Periapsis at 0°N, z=100km Can we calculate Delta V without having to run complex models for quick look estimation and mission strategy design ?

5 Previous analytical work: very complex equations by King-Hele (1987) on the “contractions of orbit” 5

6 Calculation of aerobraking Δv over one orbit Drag force on spacecraft: Change of velocity a time t: Integration over one orbit (period T ) : 6

7 7 v2v2 ρ

8 Calculation of aerobraking Δv over one orbit (2) Assuming that around perihelion the atmosphere is relatively isothermal (scale height H) : Integration of one orbit (period T ) : 8 Playing with the Keplerian equations (with simplification and development around periaspis) give the variation of altitude as function of time:

9 Density at perisapsis Relative velocity at perisapsis Scale height at periapsis (RT/g)

10 Validation : Delta V during a 200 sols (1314 orbits) “drag compensated” aerobraking campaign - MGS like shape - Inclination = 75° - Excentricity = 0.4 - Initial conditions: Ls=0° Periapsis at 0°N, z=100km

11 Validation : Delta V during a 200 sols (1314 orbits) “drag compensated” aerobraking campaign - MGS like shape - Inclination = 75° - Excentricity = 0.4 - Initial conditions: Ls=0° Periapsis at 0°N, z=100km

12 Statistics of errors (simple equation – reference model) over one Mars year simulations Orbit Inclination:

13 Statistics of errors (simple equation – reference model) over one Mars year simulations

14 Impact of the relative wind Spacecraft velocity Vspc (Galilean frame) Atmospheric wind Va (axial component) Atmospheric motion Vt (transverse component, galilean frame) One must take into account the motion of the atmosphere in addition to the spacecraft velocity Vspc. Notice that the transverse component Vt is always negligible, unlike the axial component Va, because V 0 2 ~ (Vspc + Va) 2 >> Vt 2

15 Estimation of the relative wind Case 1 : spacecraft velocity and atmospheric wind known from models: Case 2: neglect planet rotation and winds (use only spacecraft velocity in galilean frame) Case 3: atmosphere rotating like the solid planet

16 Polar orbits The error resulting from the assumption on winds depends on the orbit inclination

17 Mean zonal wind predicted by the LMD Global Climate model

18 Conclusions and perpectives Velocity change Δv during an orbital pass through the atmosphere can be computed using a simple equation with error < ~5% (better than error on density…) e.g. : This should be useful for preliminary mission design by non specialists, simple scaling,to develop autonomous aerobraking system, etc… Conversely, estimation of the velocity change provide an estimation of density at periapsis in real time. This equation should be valid on other planets

19 Thank you 19


Download ppt "A simple analytical equation to calculate the atmospheric drag during aerobraking campaigns. Application to Mars. François Forget & Michel Capderou Laboratoire."

Similar presentations


Ads by Google