Presentation is loading. Please wait.

Presentation is loading. Please wait.

XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic.

Similar presentations


Presentation on theme: "XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic."— Presentation transcript:

1 XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic Secondary Nuclei Fragments Beams: a resent years practice at LHE P.A. Rukoyatkin, L.N. Komolov, R.I. Kukushkina, V.N. Ramzhin, P.I. Zarubin Veksler and Baldin Laboratory of High Energies Joint Institute for Nuclear Research Supported by Russian Foundation for Basic Research ( 04-02-17151 )

2 LHE Accelerator Facility Polaris – d  EBIS – N, Ar, Fe … Laser – Li, B, C, F, Mg … Duoplasmotron – p, d, , 3 He Internal target Experimental hall 1B Experimental hall 205 Experimental hall NUCLOTRON – 6 GeV/n SYNCHROPHASOTRON

3 Beam Nuclotron beam intensity (particle per cycle) CurrentSrc. typeIon source devel. + booster * p 5  10 10 Duoplasmotron 1  10 13 d 5  10 10 --- # --- 1  10 13 4 He 3  10 9 --- # --- 2  10 12 dd 2  10 8 ABS (“Polaris”) 7 Li 4  10 9 Laser 5  10 12 11,10 B 1  10 9,8 --- # --- 12 C 2  10 9 --- # --- 2  10 12 24 Mg 1  10 8 --- # --- 14 N 1  10 7 ESIS (“Krion-2”) ** 5  10 11 24 Ar 2  10 7 --- # --- 2  10 9 56 Fe 1  10 6 --- # --- 131 Xe 2  10 8 238 U 1  10 8 * A.V. Butenko et al., EPAC 2002 ** E.D. Donets et al., Rev. Sci. Instr. 75, (2004) Some Nuclotron beams

4 Parameter@UnitsValue Extraction angle, hor./ ver. mr5 / 96 Momentum range Z/A = 1/2Gev/c/amu0.6 – 6.8 Momentum spread,  %0.04 – 0.08 Extraction time sec10 Beam emittance P max mm  mr22 Beam size in a waist,  P max mm< 1 Extraction efficiency %> 90 Beam profiles at the F 5 focus. Deuterons, p beam = 4.3 GeV/c,  x = 2.6 mm,  y = 3.0 mm x, mm y, mm Nuclotron slow extraction V.Volkov et al., EPAC 2004 An extracted beam spill (Nuclotron Dec. 2003 run)

5 f3 f4 f5 f6 VP-1 1v 3v 4v 5v Slowly extracted beam 6v Bending magnets Quadrupole lenses Dump, shield Nuclotron external beam lines Lines P max I max ( GeV/c ) ( ppc ) VP-1 15 10 12 1v 9 10 8 3v 9 10 9 4v 9 10 7 5v 12 10 7 6v 12 10 7 MARUSYA STRELA GIBS DELTA-SIGMA FAZA SPHERA NIS Polarized Proton Target f3 experimental area

6 A 0, Z 0, p 0 A 0, Z 0, p 0 +  (A i, Z i, p 0 ) 00 A 0, Z 0 p 0 A i /Z i p 0 A k /Z k Primary beam Target Separation systemAnalyzing detectors Projectile fragments Secondary relativistic fragments beams: a general scheme 00 00 Primary beam dump Tagging detectors (option) p 0 -- projectile momentum per nucleon

7 Secondary relativistic fragment beams: relations Fragment angular and relative momentum spread in the laboratory frame Fragment momentum spread in the projectile rest frame  0  90 MeV/c A – projectile mass number B – fragment mass number A.S. Goldhaber, Phys. Lett. 53B, p.306 p 0 – projectile momentum per nucl.  0 – projectile velocity m – nucleon mass A numerical illustration 10 B  8 B ( A=10, B=8 ) at p 0 = 2 GeV/c/nucl.  t 0  1.3 GeV/nucl.) :    7.5 mr,    1.8 %

8 Secondary relativistic fragment beams: rigidity scale neighborhood Example: 10 B  8 B fragmentation 3 He 7 Be 8B8B (p-p 0 )/z, %

9 d  + A → n  + … The lightest relativistic fragment beams P  4.5 GeV/c, I * pol. = 1.1. 10 8 Line/setup: 1v (NBL) / PPT, DELTA-SIGMA Czech. J. Phys., Vol.52, C695 P = 6.0; 9.0 GeV/c, I *  10 6 Line/setup: 6v / GIBS JINR Rap. Comm., 6[86]-97, p.61 P  1 – 4.5 GeV/c I * pol. = 2 – 4. 10 6, I * unol.  10 8 Polarization  0.55 Line/setup: 1v (NBL) / PPT, DELTA-SIGMA Czech. J. Phys., Vol.51, A345 (*) -- per cycle at P max d + A → n + … d  + A → p  + …  + A → t + …

10 Physics of Atomic Nuclei, v.66, 2003, p.1646

11 Beam by reactions 6 Li + A  Nucleus + … Primary beam: 6 Li, t = 1.9 GeV/amu, (p = 2.67 GeV/c/amu ) Intensity  5·10 7 nuclei/cycle (Synchr.) Beam sizes on a target:  x < 4 mm,  y < 8 mm Target: organic glass, 4.7 g/cm 2, at F 5 Secondary beam (4v line):(4v line) p/ Z = 8.0 GeV/c (Z/A=1/3), p/ Z = 5.35 GeV/c (Z/A=1/2); Intensity  10 4 nuclei/cycle (Z/A=1/3); y 1, mm y 2, mm Vertical beam profiles at two positions before emulsion. Beam divergence relatively to the emulsion layers -   y < 2.5 mr  y1  12.5  y2  8 Z=1 Z=2 Z=3 6 Li 6 He t QDC channels Z/A=1/3 Z/A=1/2  d Yields ratios, %: d :  = 51  3; 6 He : t = 0.85  0.05

12 f3 f4 f5 f6 VP-1 3v Extracted beams: 12 C, 10 B, 7 Li Target: 5-8 g/cm 2, polyeth. Fragment separation scheme: beam line layout

13 2SP-40 f5 Fragment separation scheme: detector layout S0S0 Multiwire ionization chambers (P9a, P10, P13, P13a, P14, P16 ) Scintillation counter (S i )  x = 6  x = 12

14 Fragment separation: an optics scheme and realized resolution Distance along beam line, m R=r 16 /E x, r 16 – linear dispersion, E x = 2  x – envelope size Bars – normalized strengths of magnetic elements FWMH p /p  2.7%

15 Z=5 (primary 10 B mark) 4 ( 9 Be ) 3 2 QDC channels Counts Secondary fragments beam: 10 B + A  9 Be + … Target: Polyethylene, 8 g/cm 2 Placing – F3 focus Separation scheme: VP-1, f3 – f5 + 2SP-40,   2SP-40 = 0.22 r Analyzer: Plastic scintillator, d=5 mm 9 Be fraction in the beam: 67 ± 2 % Primary beam momentum: p 0 = 2.0 GeV/c / nucl. Energy losses spectrum in a plastics

16 C 3 He Secondary fragments beam: 12 C + A  9 C + … ( p 0 = 2.0 GeV/c/nucl ) Z 6  51% QDC channels Energy losses spectrum in a plastics Counts

17 Secondary fragments beam: 10 B + A  8 B + … (p 0 = 2.0 GeV/c/nucl ) Z 5  62% 8B8B 10 C 7 Be 3 He QDC channels Energy losses spectrum in a plastics Counts

18 Secondary fragments beam: 7 Be Production reaction: 7 Li + A  7 Be + … Beam rejection variant 1 Y 4 : Y 1+2+3  1 : 3.3 Beam rejection variant 2 Y 4 : Y 1+2+…  1.9 : 1 7 Be 1 2 7 Be atom – T 1/2  53.4 d (e-cap.) 7 Be nucleus – stable

19 7 Be fragmentation channels N.G. Peresadko et al., arXive:nucl-ex/0605014 v1

20 Conclusion Nuclotron accelerator facility flexibly provides experiments with a wide set of primary nuclei beams (p … Fe) in the energy range from hundreds MeV to several GeV per nucleon. In-flight production of secondary relativistic nuclear fragment beams are widely practiced at the facility. Secondary beams of the beryllium, boron and carbon isotopes were recently formed to study the nuclei clustering by the nuclear emulsion method.

21 End

22 x, mm y, mm Beam profiles Relativistic tritium beam Production reaction:   + A  t + X  x  10  y  10 Beam line scheme: D 1..6 – quadrupole doublets, M 1..3 – bending magnets, GIBS – setup. TOF base  78 m. Target Triton momentum – 6 GeV/c Momentum spread (  ) – 1.6 % ( TOF tagging was used) Yeild at the line end – 5  10 -3 I  @ Target – polystyrene, 5 g/cm 2 p  = 8 GeV/c ( I   10 9 ppc ) Momentum distribution    1.6  p, % Ref.: S.A. Avramenko et al., JINR Rap. Comm., 6[86]-97, p. 61; S.A. Avramenko et al., Nucl. Phys. A 596, p. 355

23 Emuls. Beam by reactions 6 Li + A  Nucleus + … Optics scheme and detectors layout 6 Li


Download ppt "XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic."

Similar presentations


Ads by Google