Download presentation
Presentation is loading. Please wait.
Published byPeter Joseph Modified over 9 years ago
1
Laboratory characterization and astronomical detection of the nitrosylium (nitrosyl) ion, NO + Stéphane Bailleux stephane.bailleux@univ-lille1.fr University of Lille June 18, 2014 – 69 th ISMS Meeting
2
Atmospheric NO + D- & E- regions of the ionosphere ( 60 – 130 km ) NO + and O 2 + : most abundant ions (Dalgarno & Fox, 1994) photo–ionization (UV + X–rays) of N 2, NO, O 2 low exothermicity : major source and sink of other species (N, O, NO) Significant IR emitter in the thermosphere : N + + O 2 → NO + (v) + O O + + N 2 → NO + (v) + N EnviSat satellite / MIPAS spectrometer (40 – 170 km) 38 r o-vibrational lines (López-Puertas et al, 2006)
3
Astro-chemistry of NO + NO (X ² Π ) detected in : Sgr B2 (Liszt & Turner, 1978) L134N (McGonagle et al, 1990) Orion–KL, W33A, W51M (Ziurys et al, 1991) NO + in space if T sources < 15 K Herbst & Klemperer (1973), Alberti & Douglas (1975) Pickles & Williams (1977), Singh & Maciel (1980) Many N–bearing species detected, e.g. HCN, HNC, NO, HNO, … NH 3, N 2 H +, NH 4 +, … CN (–), C 3 N (–), C 5 N (–), … NO/H 2 ~ 10 –8
4
Molecular properties First ionization energy of NO : 9.264 eV Reactivity : X 1 Σ + (close-shell) isoelectronic with CO, N 2 I ( 14 N) = 1 ⇒ quadrupolar (hyperfine) structure stable r e exp = 1.063 Å ( r NO ≃ 1.15 Å) µ ≃ 0.36 D
5
Spectroscopy of NO + Electronic emission : A 1 Π – X 1 Σ + J = 1 – 0 : ~119 187 ± 30 MHz (Alberti & Douglas, 1975) NO + in Ne matrix (Jacox & Thompson, 1990) fundamental vibrations (cm –1 ) : 14 N 16 O + : 2345.2 15 N 16 O + : 2303.8 14 N 18 O + : 2284.2 Hi–resolution spectroscopy IR (diode laser) : 8 transitions MMW : 2 lines (Bowman, Herbst & De Lucia, 1982) J = 2 – 1 @ 238.38 GHz + hyperfine structure ( 14 N) J = 3 – 2 @ 357.56 GHz
6
Extended negative glow discharge to pump N2N2 LN 2 solenoid pressure gauge NO or N 2 + O 2 anode 320 MHz 10 MHz PLL feedback IF 12 -18 GHz local oscillator ~10 MHz Ref. oscillator 10 MHz Rb atomic clock Phase Sensitive Detector InSb Oscilloscope phase modulation BWO pre- amplifier LN 2 -cooled absorption cell ballast 5 kV /8 mA BWO power supply
7
Laboratory measurements vJ’ ( 14 NO + ) ( 15 NO + ) 05 595 886.721 (15) 574 822.400 (120) 6715 019.297 (40)689 744.9160000 7834 127.480 (40)804 645.051 (50) 8953 207.189 (50)919 518.648 (60) 91 072 254.440 000000 1 034 362.020 000000 15590 225.390 (50)569 461.0330000 6708 225.5590000 7826 201.235 (80)797 136.944 (60) 8944 148.548 (75)910 936.1490000 25584 542.326 (50) J = 1 ← 0 triplet not observed ( 14 NO + v = 0) 119 191.84 MHz (F = 1 ← 1) 119 193.88 MHz (F = 2 ← 1)F = J + I N 119 196.94 MHz (F = 0 ← 1)
8
Bowman et al. (1982) cm –1 14 NO +
9
Constants (MHz) NO + 14 NO + 15 NO + our workBowman et alour work rotation B0B0 59 597.139 (6) 59 597.132 (16) 57 490.109 (8) D0D0 0.16943 (6) 0.171 (1) 0.15776 (7) B1B1 59 031.032 (9) 56 954.176 (2) D1D1 0.16991 (9) 0.15776 B2B2 58 462.854 (64) D2D2 0.1724 (13) quadrupole eQq 0 -6.715 (40) -6.76 (10)
10
IRAM 30 m telescope (Pico Veleta, Spain) Line surveys 3, 2 & 1 mm 198 kHz resolution 3 mm 50 kHz resolution
11
Target : cold, dark core B–1b (1200 M ☉ ) 1 st detected in B1–b : HCNO, CH 3 O, NH 4 +, NH 3 D + D–fractionation : NH 3 D +, ND 3, D 2 CS, … rich chemistry in B1–bB1–b : helps understanding star formation 2 very dense cores N(H 2 ) = 10 23 cm –2 n(H 2 ) = 10 5 cm –3 T = 12 –15 K Molecular clouds in Perseus © Adam Block
12
2 velocity components 6.5 km s –1 : 1.5 10 12 cm – ² 7.5 km s –1 : 6.5 10 11 cm – ² 6 hyperfine components (6.5 km s –1 ) NO + J = 2 – 1 0 5 10 15 V LSR (km s –1 ) Predicted line profile from a model with 2 velocity components O NLY NO + MATCHES THIS LINE IN THE M ADEX C ODE (4900 SPECIES )
13
NO + J = 2 – 1 238.38 GHz HCNO J = 4 – 3 HSCN J = ³/₂ – ¹/₂ F = ⁵/₂ – ³/₂ NO 150 176 MHz J K a K c = 1 01 – 0 00 HNO new species NOHNO X NO / X NO + ≃ 510 X NO / X HNO ≃ 550 X NO + / X HNO ≃ 1 91 751 MHz 81 477 MHz
14
Time–dependent gas–phase model 1117 species 1117 reactions Pathways in cold, dense clouds charge transfert : H + + NO → NO + + H ion – molecule : N + + CO → NO + + C proton elimination : H + + HNO → NO + + H 2 dissociative recombination : NO + + e → N + O
15
model : typical dark cloud n(H 2 ) ≃ 10 5 cm –3 T ≃ 10 K X NO + pred ≃ X NO + obs X NO pred ≃ 4 X NO obs X HNO pred ≃ 150 X HNO obs Abundance relative to H 2 Time (yrs) Predicted abundances
16
only 1 line detected no satisfactory chemical formation path matches the low observed HNO abundance better models needed (reactions at the surfaces of grains, …) Interstellar species containing N and O poorly studied Concluding remarks
17
Co–authors E. Alekseev (Inst. Radio–Astronomy, Karkhov) J. Cernicharo & B. Tercero (Dep. Astrophysics, Madrid) A. Fuente & R. Bachiller (Obs. Astronomy, Spain) E. Roueff & M. Gerin (Obs. Paris–Meudon) S. P. Treviño–Morales (IRAM, Spain) N. Marcelino (NRAO) B. Lefloch (Inst. Planetologie & Astrophysique, Grenoble, Fr)
18
Y 10 ( e ) 2 376.593 (3)cm –1 Y 20 000 -16.286 (1)cm –1 U 01 / µ µµ 59 882.95 (5)MHz Y 01 (B e ) 59 879.38 (5)MHz 01 N 111 -1.52 (2) Y 11 ( - e ) -563.94 (2)MHz Y 21 11 ( e ) -1.084 (5)MHz Y 02 ( - D e ) -169.19 (9)kHz Y 12 2 ( e ) -0.43 (10)kHz Dunham analysis ( 14 N 16 O + ) E v,J / ℎ = ∑ Y lm (v + ½ ) l J m (J+1) m Y 01 = U 01 / µ (1 + m e 01 N /M N ) U 01 (r e BO ) ² = 505 379.005(36) r e BO = 1.0631546 (5) Å
19
Complete spectrum (1.7 GHz)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.