Download presentation
1
Cytoskeleton - Locomotion
Kohidai, Laszlo MD, PhD Med. habil., Assoc. Professor Dept. Genetics, Cell & Immunobiology, Semmelweis University Lecture ED 2014
2
Main functions of cytoskeleton
Determines the shape of the cell Anchores organelles Movement of organelles Tensile strength Movement of chromosomes Polarity Motility
3
Cytoskeleton Microfilaments (actin) Microtubuli (tubulin)
Intermedier filaments Motor proteins Actin and microtubule associated proteins
4
Microfilaments Microtubuli Intermedier filaments
5
SLIDING Globular proteins Ca2+ ATP Motor proteins Fibrillar proteins
6
Microfilaments
7
Polymerization of actin
+ ATP ADP Depolymerization - cytochalasin – inh. phalloidin - stabilizer ADP ATP Pi Polymerization - slow
8
Actin - still in Prokaryots !
((Ent et al. Nature 2001,413, 39)
9
Other actin homologues
((Roeben A et al. J Mol. Biol 2006, 358, 145)
10
Comparison of homologues
Polymerization in both forms Opposite chirality !!! ((Wickstead and Gull J Cell. Biol 2011, 194, 513)
11
Cyclosis Transitional connections between actin and myosin
Moving cytoplasm Stationary (cortical) Actin filaments Chloroplasts Cell-wall Plasma membrane Transitional connections between actin and myosin Ca2+, temperature- and pH-dependent (Lodish, H. et al. Mol. Cell Biol. 2000, 767)
12
„Fountain” mechanism Ca2+-dep. requires ATP Mono- Poly- Lobo- podial
Filo- Reticulo- Formation of pseudopodium stress-fibrillums integrins
13
Cross-linking proteins of actin
contractile bundle a actinin – in stress fibr. gel-like network filamin - cortex „tight” parallel bundle fimbrin – in filopodium
14
Migrating keratinocyte
15 mm/sec Formation of lobopodium actin-network microtubuli
15
Regulator proteins of actin polymerisation
gCAP39 Severin Gelsolin Villin CapZ Tropomodulin - + Cofilin Severin Gelsolin
16
Actin polymerization – acrosomal-reaction
(Lodish, H. et al. Mol. Cell Biol. 2000, 767)
17
Listeria monocytogenes
local actin polymerization speed: 10 mm/min high ability to transmit in tissues actin (Fred Soo & Julie Theriot Laboratory
18
Model of actin nucleation
WASP = Wiscott-Aldrich syndr. prot.
19
Structure of cortical region
(Svitkina, TM, Borisy GG J. Cell Biol. 1999, 145, 1009)
20
Actin – membrane links F-Actin Myosin I. Arp2/3 Profilin - G-actin
Integrin Filamin
21
Profilin-mechanism Tb4 = thymosin b4
Proline-rich protein (Lodish, H. et al. Mol. Cell Biol. 2000, 767)
22
Filamin – Membrane link
actin
23
+ Structure of focal contact actin filament a actinin vinculin
paxillin talin integrin fibronectin
24
A plasma membrane – cortex links
Thrombocyte Muscle Epithel Spectrin tetramer Glycophorin Ankyrin ((Lux SE, 1979 Nature 281:426)
25
+ + + - - E Electromagnetic field induces the transformation
of cytoskeleton and formation of pseudopodia Adhesion plaque + + + - -
26
Myosin head Ca2+-dependent phosphorylation
and its effect on the 3D strcture ATP - ADP Pi light chain heavy chain a helix myosin I. 150 kD monomer myosin I I. 260 kD Head: - ATP-ase - motor dimer
27
Distribution of myosines in the migrating Dyctiostelium and in dividing cell
myosin I. (green) myosin II. (red) (Fukui, Y. Mol. Cell Biol 2000, 785))
28
- + Main types of interactions between the globular
and fibrillar components of cytoskeleton membrane
29
Non-treated F-actin blocked MT-blocked
30
Microtubules
31
Tubulin – still in Prokaryotes ! FtsZ Tubulin
(Margolin Laboratory, University of Texas)
32
Comparison of homologues
Polymerization in both forms Monomers build helical structure vs. dimers build tubulus ((Wickstead and Gull J Cell. Biol 2011, 194, 513)
33
Polymerization of tubulin
GTP GTP GTP GTP Polymerization - fast Protofilament (strait) GDP GDP GDP GDP Protofilament (curved) Depolymerization
34
Dynamics of microtubule-assembly
Nucleation Elongation - + incorporation balanced release
35
Role of g-tubulin in nucleation
(Wiease et al. Curr.Opin.Struct.Biol. 1999, 9, 250)
36
Microtubular systems in the cells - Centrosome - Cilia / flagellum
Interphase cell Dividing cell Neuron centrosome Basal body Cilla spindle axon Microtubular systems in the cells - Centrosome - Cilia / flagellum - Mitotic system - Vesicular transport
37
MTOC = Microtubulus organizing center
g-tubulin specific region of the cortex ((Brinkley, B.R. Encyclop. Neurosci. 1987, 665)
38
Network of microtubuli
Protofilaments a-b dimer alpha tubulin beta tubulin 24 nm Fibroblast
39
Cilia cilia flagellum Paramecium
40
A B dynein-arms nexin tubulin (13 ill. 11 protofilaments)
41
Composition of dynein-arms
ATP-independent binding ATP-dependent hydrolysis The arm moves toward the - pole
42
The role of dynein arms in beating of cilia Bending „Telescoping” Proteolysis
43
Molecules composing the cilia
more than 250 types of molecules 70% a and b tubulin dynein arms outer - 9 polypeptides - ATP-ase inner – composition varies radial spokes polypeptides
44
Microtubules of mitotic spindle and kinetochore
45
Arrangement of actin during cell-division
46
Intermedier filaments
47
Crescentin
48
Mechanical characterization of cytoskeleton components
intermedier filament i.e. vimentin microtubule = rupture deformation actin filament force
49
Role of intermedier filaments
Buffer against external mechanical stress Tissue specificity Epithel – keratin Connective tissue Muscles Neuroglia Neurones - neurofilaments Nucleus – lamines (lamina fibrosa) } vimentin
50
Structure of intermedier filamentums
(Lodish, H. et al. Mol. Cell Biol. 2000, 767)
51
Domain structures of intermedier filamentums
H2N- a helical domain -COOH keratins vimentin neurofilam. prot. nuclear prot
52
Intermedier filaments
Keratin filaments Vimentin-like filaments ! They DO NOT co-polymerize !
53
Microvilli myosin I. actin villin „terminal web”
a rigid bundle composed by actin mol.s actin + on the apical part villin is the linker molecule of actins „terminal web” = intermedier fil. + spectrin anchoreb by myosin I. and calmodulin to the surface membrane
54
SEM structure of microvilli
actin bundle linker molecules „terminal web”
55
Intermedier filaments
Neuro-filaments – many cross-linkers Glial filaments – few cross-linkers The number of protein cross-links between the intermedier filaments varies in different tissues
56
Microtubuli associated proteins
(MAP-s)
57
Groups of MAP-s Structural MAP-s - MT-assembly - links to MF and to IF
Motor proteins - sliding on MT Enzymes, signal molecules - glycolytic enzymek - kinases Shape and polarity of the cell Membrane transports Assembly of molecules
58
Motor-proteins
59
Structure of motor-proteins
motor domain motor domain assoc. polypeptides „stalk” Kinesin Myosin Dynein
60
Motor proteins - + kinesin dynein microtubule kinesin dynein heavy
chain light chain kinesin dynein
61
kinesin - + dynein cAMP cAMP pigment cells
62
Kinesin ADP ATP ADP ATP ADP ATP ADP ADP-Pi
63
MT-motor proteins and the transported elements
(Hirokawa, N. Science 1998, 279:519
64
Dynein – membrane relations
(Hirokawa, N. Science 1998, 279:519)
65
There are other mechanisms
over sliding …
66
Locomotion – with spasmoneme of Vorticella
67
Spasmoneme spring Contracts 40% in few msecs Velocity: 8 cm˛/sec
Negative charges Neutralization with Ca2+
68
Actin spring in sperm of horse-shoe crab Limulus polyphemus
! acrosome actin bundle The extension does not involve a myosin motor or actin polymerization The bundle is crystalline in its coiled and uncoiled states
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.