Presentation is loading. Please wait.

Presentation is loading. Please wait.

Acid/Base Definitions  Arrhenius Model  Acids produce hydrogen ions in aqueous solutions  Bases produce hydroxide ions in aqueous solutions  Bronsted-Lowry.

Similar presentations


Presentation on theme: "Acid/Base Definitions  Arrhenius Model  Acids produce hydrogen ions in aqueous solutions  Bases produce hydroxide ions in aqueous solutions  Bronsted-Lowry."— Presentation transcript:

1

2 Acid/Base Definitions  Arrhenius Model  Acids produce hydrogen ions in aqueous solutions  Bases produce hydroxide ions in aqueous solutions  Bronsted-Lowry Model  Acids are proton donors  Bases are proton acceptors  Lewis Acid Model  Acids are electron pair acceptors  Bases are electron pair donors

3 Acid Dissociation HA  H + + A - Acid Proton Conjugate base Alternately, H + may be written in its hydrated form, H 3 O + (hydronium ion)

4 Dissociation of Strong Acids Strong acids are assumed to dissociate completely in solution. Large K a or small K a ? Reactant favored or product favored?

5 Dissociation Constants: Strong Acids AcidFormula Conjugate Base KaKa Perchloric HClO 4 ClO 4 - Very large Hydriodic HI I - Very large Hydrobromic HBr Br - Very large Hydrochloric HCl Cl - Very large Nitric HNO 3 NO 3 - Very large Sulfuric H 2 SO 4 HSO 4 - Very large Hydronium ion H 3 O + H 2 O 1.0

6 Strength of oxyacids The more oxygen hooked to the central atom, the more acidic the hydrogen. HClO 4 > HClO 3 > HClO 2 > HClO Remember that the H is attached to an oxygen atom. The oxygens are electronegative Pull electrons away from hydrogen

7 Strength of oxyacids Electron Density ClOH

8 Strength of oxyacids Electron Density ClOHO

9 Strength of oxyacids ClOH O O Electron Density

10 Strength of oxyacids ClOH O O O Electron Density

11 Dissociation of Weak Acids Weak acids are assumed to dissociate only slightly (less than 5%) in solution. Large K a or small K a ? Reactant favored or product favored?

12 Dissociation Constants: Weak Acids AcidFormula Conjugate Base KaKa Iodic HIO 3 IO 3 - 1.7 x 10 -1 Oxalic H 2 C 2 O 4 HC 2 O 4 - 5.9 x 10 -2 Sulfurous H 2 SO 3 HSO 3 - 1.5 x 10 -2 Phosphoric H 3 PO 4 H 2 PO 4 - 7.5 x 10 -3 Citric H 3 C 6 H 5 O 7 H 2 C 6 H 5 O 7 - 7.1 x 10 -4 Nitrous HNO 2 NO 2 - 4.6 x 10 -4 Hydrofluoric HF F - 3.5 x 10 -4 Formic HCOOH HCOO - 1.8 x 10 -4 Benzoic C 6 H 5 COOH C 6 H 5 COO - 6.5 x 10 -5 Acetic CH 3 COOH CH 3 COO - 1.8 x 10 -5 Carbonic H 2 CO 3 HCO 3 - 4.3 x 10 -7 Hypochlorous HClO ClO - 3.0 x 10 -8 Hydrocyanic HCN CN - 4.9 x 10 -10

13 Self-Ionization of Water H 2 O + H 2 O  H 3 O + + OH - At 25 , [H 3 O + ] = [OH - ] = 1 x 10 -7 K w is a constant at 25  C: K w = [H 3 O + ][OH - ] K w = (1 x 10 -7 )(1 x 10 -7 ) = 1 x 10 -14 = [K a ][K b ]

14 Calculating pH, pOH pH = -log 10 (H 3 O + ) pOH = -log 10 (OH - ) Relationship between pH and pOH pH + pOH = 14 Finding [H 3 O + ], [OH - ] from pH, pOH [H 3 O + ] = 10 -pH [OH - ] = 10 -pOH

15 pH and pOH Calculations

16 A Weak Acid Equilibrium Problem What is the pH of a 0.50 M solution of acetic acid, HC 2 H 3 O 2, K a = 1.8 x 10 -5 ? Step #1: Write the dissociation equation HC 2 H 3 O 2 (aq) + H 2 O (l)  C 2 H 3 O 2 - (aq) + H + (aq)

17 A Weak Acid Equilibrium Problem What is the pH of a 0.50 M solution of acetic acid, HC 2 H 3 O 2, K a = 1.8 x 10 -5 ? Step #2: ICE it! HC 2 H 3 O 2  C 2 H 3 O 2 - + H + I C E 0.50 0 0 - x +x 0.50 - x xx

18 A Weak Acid Equilibrium Problem What is the pH of a 0.50 M solution of acetic acid, HC 2 H 3 O 2, K a = 1.8 x 10 -5 ? Step #3: Set up the law of mass action HC 2 H 3 O 2  C 2 H 3 O 2 - + H + 0.50 - xxx E

19 A Weak Acid Equilibrium Problem What is the pH of a 0.50 M solution of acetic acid, HC 2 H 3 O 2, K a = 1.8 x 10 -5 ? Step #4: Solve for x, which is also [H + ] HC 2 H 3 O 2  C 2 H 3 O 2 - + H + 0.50 - xxx E [H + ] = 3.0 x 10 -3 M

20 A Weak Acid Equilibrium Problem What is the pH of a 0.50 M solution of acetic acid, HC 2 H 3 O 2, K a = 1.8 x 10 -5 ? Step #5: Convert [H + ] to pH HC 2 H 3 O 2  C 2 H 3 O 2 - + H + 0.50 - xxx E pH = - log (3.0 x 10 -3 ) = 2.52

21 Dissociation of Strong Bases  Strong bases are metallic hydroxides  Group I hydroxides (NaOH, KOH) are very soluble  Group II hydroxides (Ca, Ba, Mg, Sr) are less soluble  pH of strong bases is calculated directly from the concentration of the base in solution MOH(s)  M + (aq) + OH - (aq)

22 Reaction of Weak Bases with Water The base reacts with water, producing its conjugate acid and hydroxide ion: CH 3 NH 2 + H 2 O  CH 3 NH 3 + + OH - K b = 4.38 x 10 -4

23 K b for Some Common Weak Bases BaseFormula Conjugate Acid KbKb Ammonia NH 3 NH 4 + 1.8 x 10 -5 Methylamine CH 3 NH 2 CH 3 NH 3 + 4.38 x 10 -4 Ethylamine C 2 H 5 NH 2 C 2 H 5 NH 3 + 5.6 x 10 -4 Diethylamine (C 2 H 5 ) 2 NH (C 2 H 5 ) 2 NH 2 + 1.3 x 10 -3 Triethylamine (C 2 H 5 ) 3 N (C 2 H 5 ) 3 NH + 4.0 x 10 -4 Hydroxylamine HONH 2 HONH 3 + 1.1 x 10 -8 HydrazineH 2 NNH 2 H 2 NNH 3 + 3.0 x 10 -6 Aniline C 6 H 5 NH 2 C 6 H 5 NH 3 + 3.8 x 10 -10 Pyridine C 5 H 5 N C 5 H 5 NH + 1.7 x 10 -9 Many students struggle with identifying weak bases and their conjugate acids.What patterns do you see that may help you?

24 Reaction of Weak Bases with Water The generic reaction for a base reacting with water, producing its conjugate acid and hydroxide ion: B + H 2 O  BH + + OH -

25 A Weak Base Equilibrium Problem What is the pH of a 0.50 M solution of ammonia, NH 3, K b = 1.8 x 10 -5 ? Step #1: Write the equation for the reaction NH 3 + H 2 O  NH 4 + + OH -

26 A Weak Base Equilibrium Problem What is the pH of a 0.50 M solution of ammonia, NH 3, K b = 1.8 x 10 -5 ? Step #2: ICE it! I C E 0.50 0 0 - x +x 0.50 - x xx NH 3 + H 2 O  NH 4 + + OH -

27 A Weak Base Equilibrium Problem Step #3: Set up the law of mass action 0.50 - xxx E What is the pH of a 0.50 M solution of ammonia, NH 3, K b = 1.8 x 10 -5 ? NH 3 + H 2 O  NH 4 + + OH -

28 A Weak Base Equilibrium Problem Step #4: Solve for x, which is also [OH - ] 0.50 - xxx E [OH - ] = 3.0 x 10 -3 M NH 3 + H 2 O  NH 4 + + OH - What is the pH of a 0.50 M solution of ammonia, NH 3, K b = 1.8 x 10 -5 ?

29 A Weak Base Equilibrium Problem Step #5: Convert [OH - ] to pH 0.50 - xxx E What is the pH of a 0.50 M solution of ammonia, NH 3, K b = 1.8 x 10 -5 ? NH 3 + H 2 O  NH 4 + + OH - pOH = - log (3.0 x 10 -3 ) = 2.52 pH = 14 - pOH = 11.48

30

31 Acid-Base Properties of Salts Type of SaltExamplesCommentpH of solution Cation is from a strong base, anion from a strong acid KCl, KNO 3 NaCl NaNO 3 Both ions are neutral Neutral These salts simply dissociate in water: KCl(s)  K + (aq) + Cl - (aq)

32 Acid-Base Properties of Salts Type of SaltExamplesCommentpH of solution Cation is from a strong base, anion from a weak acid NaC 2 H 3 O 2 KCN, NaF Cation is neutral, Anion is basic Basic C 2 H 3 O 2 - + H 2 O  HC 2 H 3 O 2 + OH- base acid acid base The basic anion can accept a proton from water:

33 Acid-Base Properties of Salts Type of SaltExamplesCommentpH of solution Cation is the conjugate acid of a weak base, anion is from a strong acid NH 4 Cl, NH 4 NO 3 Cation is acidic, Anion is neutral Acidic NH 4 + (aq)  NH 3 (aq) + H + (aq) Acid Conjugate Proton base The acidic cation can act as a proton donor:

34 Acid-Base Properties of Salts Type of SaltExamplesCommentpH of solution Cation is the conjugate acid of a weak base, anion is conjugate base of a weak acid NH 4 C 2 H 3 O 2 NH 4 CN Cation is acidic, Anion is basic See below  IF K a for the acidic ion is greater than K b for the basic ion, the solution is acidic  IF K b for the basic ion is greater than K a for the acidic ion, the solution is basic  IF K b for the basic ion is equal to K a for the acidic ion, the solution is neutral

35

36 Acid-Base Properties of Salts Type of SaltExamplesCommentpH of solution Cation is a highly charged metal ion; Anion is from strong acid Al(NO 3 ) 2 FeCl 3 Hydrated cation acts as an acid; Anion is neutral Acidic Step #1: AlCl 3 (s) + 6H 2 O  Al(H 2 O) 6 3+ (aq) + Cl - (aq) Salt water Complex ion anion Step #2: Al(H 2 O) 6 3+ (aq)  Al(OH)(H 2 O) 5 2+ (aq) + H + (aq) Acid Conjugate base Proton

37 Effect of Structure on Acid-Base Properties

38 Hydrated metals Highly charged metal ions pull the electrons of surrounding water molecules toward them. Make it easier for H + to come off. Al +3 O H H

39 Acid-Base Properties of Oxides Non-metal oxides dissolved in water can make acids. SO 3 (g) + H 2 O(l) H 2 SO 4 (aq) Ionic oxides dissolve in water to produce bases. CaO(s) + H 2 O(l) Ca(OH) 2 (aq)

40 What is the concentration of H 3 O + in pure water? 1.1.00 x 10 –7 M 2.7.00 M 3.1.00 x 10 -14 4.1.00 x 10 7 M 5.7.00 x 10 -14

41 [H + ] = 8.26 x 10 –5 M, what is the pH of the solution? 1.2.16 2.4.1 3.4.08 4.4.083 5.8.024

42 Which of the following is a conjugate acid/base pair? 1.HCl/OCl - 2.H 2 SO 4 /SO 4 2- 3.NH 4 + /NH 3 4.H 3 O + /OH - 5.none of these

43 Which of the following indicates the most basic solution? 1.[H + ] = 1 × 10 –10 M 2.pOH =6.7 3.[OH – ] = 7 × 10 –5 M 4.pH = 4.2 5.At least two of the solutions are equally basic.

44 Dissolving Na 2 SO 4 in water will create a ______ solution. 1.Acidic 2.Basic 3.Neutral 4.Cannot be determined.

45 Calculate the pH of a 0.17 M solution of HOCl, K a = 3.5 10 -8. 1.4.11 2.8.23 3.9.89 4.1.00 5.3.77


Download ppt "Acid/Base Definitions  Arrhenius Model  Acids produce hydrogen ions in aqueous solutions  Bases produce hydroxide ions in aqueous solutions  Bronsted-Lowry."

Similar presentations


Ads by Google