Presentation is loading. Please wait.

Presentation is loading. Please wait.

The properties of mixtures Yongsik Lee March 2005.

Similar presentations


Presentation on theme: "The properties of mixtures Yongsik Lee March 2005."— Presentation transcript:

1 The properties of mixtures Yongsik Lee March 2005

2 Thermodynamic description of mixtures Yongsik Lee

3 Partial molar properties  Definition Contribution (per mole) that a substance makes to an overall property of a mixture  Example Partial molar volume (V J ) Partial molar Gibbs energy (G J )

4 Partial molar volume  Example : V J Water/ethanol mixture What is the total volume of a mixture of 50.0 g of ethanol and 50.0 g of water at 25 ℃ ? 1 mol of water + pure water = 18 cm 3 1 mol of water + pure ethanol = ?

5 Partial molar volume (V J )  Water/ethanol mixture V J V = n A V A + n B V B 1 mol of water + pure water = 18 cm 3 1 mol of water + pure EtOH = 14 cm 3 2.77 mol water + 1.09 mol EtOH Mole fraction  X EtOH = 0.282

6 Partial molar Gibbs energy  Contribution of J to the total Gibbs energy of a mixture G = n A G A + n B G B  Chemical potential (μ) Partial molar Gibbs energy G = n A μ A + n B μ B

7 Variation of chemical potential  For a perfect gas, G(P f )-G(P i )=nRT ln(P f /P i ) G m (P f ) = G m (P i ) + RT ln(P f /P i )  Set P f =P and P i =P°(the standard pressure, 1 bar) G m (P) = G m (P°) + RT ln(P/P°)  For a mixture of perfect gases, G m (P) = G m (P°) + RT ln(P/P°) μ J = μ J ° + RT ln(P J /P°) μ J = μ J ° + RT lnP J  μ J ° = Standard chemical potential of the gas J

8 Spontaneous mixing  All gases mix spontaneously Gibbs energy of mixing (ΔG mix ) < 0 n A, p, Tn B, p, T n A + n B, p, T

9 Gibbs energy of mixing  ΔG mix = G f - G i G i = n A μ A + n B μ B = n A (μ A ° + RT ln p) + n B (μ B ° + RT ln p) G f = n A (μ A ° + RT ln x A p) + n B (μ B ° + RT ln x B p)  consider partial pressure for A and B  ΔG mix = n A (RT ln x A ) + n B (RT ln x B ) = nRT[x A ln x A + x B ln x B ]  (ΔG mix ) < 0

10 Entropy of mixing  ΔG mix = nRT[x A ln x A + x B ln x B ] With ΔG = ΔH - T ΔS  ΔH =0 then  ΔS mix = -nR[x A ln x A + x B ln x B ]  The increase in entropy of the system is the driving force of the mixing!

11 Raoult’s law  Chemical potential of a solute  Partial vapor pressure(p J ) of each component in the mixture  Francois Raoult (1830-1901)

12 Raoult’s Law  p J = x J p J *  The partial vapor pressure of a substance(p J ) in a mixture is proportional to its mole fraction(x J ) in the solution and its vapor pressure when pure(p J *)  Limiting law ([J]→0)

13 Molecular origin of Raoult’s law

14 Ideal solution  Definition A hypothetical solution That obeys Raoult’s law throughout the composition range from pure A to pure B No mixture is perfectly ideal! (deviations)

15 Real solution vs. ideal solution

16 Ideal dilute solution  Henry’s law p B =x B K B K B = Henry’s law constant Only at low [B]  Ideal-dilute solution Solute B obeys Henry’s

17 Real solution  Activity(a J ) = effective concentration  μ J = μ J ° + RT ln a J Always true at any concentration For ideal solution, a J = x J For ideal-dilute solution,  a A = γ A x A, a B = γ B [B],  Activity coefficient  γ A →1 as x A →1 ; γ B →1 as [B] →0 For a pure liquid or solid, a=1

18 Colligative properties Yongsik Lee

19 Colligative properties  Definition “Depending on the collection” Depending on the number  not the nature  Chemical potential equilibrium  Examples Boiling point, freezing point modification Osmosis, osmotic pressure

20 Modification of bp and fp

21 Condition of solute  용질의 조건 Solute is not volatile  No concentration to the vapor phase Solute does not dissolve in solid solvent  ΔT b = K b b(B) Ebullioscopic constant  ΔT f = K f b(B) Cryoscopic constant

22 osmosis

23  Macromolecule is uncharged  Macromolecule can not pass through the membrane  Solvent flows from right to left, diluting the macromolecular sol’n  As the dilution takes place, the solutionn vol. increases and the level in the capillary rises Osmotic Pressure

24 Osmotic pressure

25 osmosis  movement of a solvent  through a semipermeable membran ( 반투막 )  into a solution of higher solute concentration  to equalize the concentrations of solute on the two sides of the membrane  Osmotic pressure (Π)

26 Jacobus H. van 't Hoff (1852-1911) Nobel Prize 1901 The first nobel prize in chemistry

27 Van’t Hoff equation  At Equilibrium μ(solvent in the solution, p+Π) = μ(pure solvent, p)  Van’t Hoff equation μ*(pure solvent, p)= μ(x A solvent, p+Π) μ*(pure solvent, p)= μ*(p+Π) + RT ln x A μ*(pure solvent, p)= μ*(p) + V A Δp + RT ln x A 0 = V A Δp + RT ln x A V A Π = RTx B  Useful for Molecular weight determination Macromolecules – MALDI

28

29 Van’t Hoff Coefficient  Van’t Hoff 계수 (i) 용액에 있는 입자의 몰 수와 용액에 녹아 있는 용질의 몰 수 비율  실제값과 이론값이 다른 이유 이온들이 이온쌍으로 행동 전하량이 큰 이온의 경우 두드러진다 ΔT = imK

30 Phase diagrams of mixtures Yongsik Lee 2005. 4. 7

31 Phase Diagram  물질의 상전이도 (phase diagram) 물질의 온도를 일정하게 하고 압력을 변화시키면 어떤 특정한 압력에서 물질의 두 상 사이의 전이 (phase transition) 가 일어나게 된다. 이 과정을 많은 다른 온도에서 되풀이하면 평형 곡선이 완성된다.  상전이도의 구성 가로축에 온도, 세로축에 압력을 표시하고 주어 진 온도와 압력에서 가장 안정된 상을 표시한다.

32 Mixtures of volatile liquids  Temp(T)-composition(x A ) diagram  Vapor in equilibrium is also a mixture of two  Composition is different (tie line)  Tie line A line joining two phases that are in equilibrium with each other

33 Fractional distillation

34 Distiller  술은 보통 제조방법에 따라 세 가지로 분류된다. 양조주 증류주 재제주 ( 혼성주 )  양조주 ( 釀造酒 )- 발효주 과실이나 곡류 등에 함유된 당분이나 녹말을 효모의 작용에 의해 발효 알코올분이 비교적 낮아 변질되기 쉬 운 단점이 있으며, 원료 성분에서 오는 특유의 향기와 부 드러운 맛이 있다. 막걸리, 과실주 ( 포도주, 사과주 등 ), 맥주, 청주

35 증류주  증류주 ( 蒸溜酒 ) 양조주를 다시 증류하므로써 알코올분이 비 교적 높으며 증류과정에서 불순물을 대부분 제거했다. 마시고 난후 양조주에 비해 숙취 가 덜한 것도 이때문이다. 와인을 증류한 브랜디, 곡주를 증류한 소주, 보드카, 고량주, 맥주를 증류한 위스키, 사탕 수수주를 증류한 럼 등이 증류주에 속하며 이밖에도 선인장주를 증류한 데킬라 따위를 들 수 있다. 증류주는 양조주와 달리 오래 묵으면 묵을 수록 주질이 좋아진다.  재제주 ( 再製酒 ) 양조주나 증류주 등에 과실, 향료, 감미료, 약초 따위를 첨가하여 침출 또는 증류하여 만든 술을 말한다. 혼성주 ( 混成酒 ) 라고도 하는 이 주류는 감미 ( 甘味 ) 및 혼입 재료에서 오는 독특한 향기 가 있는 것이 특징이다. 재제주류에 속하는 술로는 매실주, 인삼주, 오가피주 등을 들 수 있다.

36 Oil refining

37 azeotrope

38  Azeotrope Greek words for “boiling without changing” No furthur separation by distillation  High-boiling azeotrope HCl/water mixture 80%wt, boils at 108.6 ℃  Low-boiling azeotrope EtOH/water 4%wt, boils at 78 ℃

39 Liquid-liquid phase diagrams

40 Iodine in heptane/water  The two layers are then mixed by "vigorously flicking" the test tube with the fingers of the right hand.  The purple color is the formation of I 2  I 2 is more soluble in heptane than water.  http://www.sfu.ca/chemistr y/students/courses/chem1 10- 111/techniques/hept_iodin e.htm

41 Partially miscible liquids  Partially miscible Do not mix together in all proportions Consists of two liquid phases Nitrobenzene/hexane Use lever rule

42 Lever rule  Lever rule Mixture of x A (Amount of phase of a”)(l”) = (amount of phase of a’)(a’)

43 Critical solution temperature  Upper critical solution temperature (T uc ) Upper limit of temperature at which phase separation occurs Fully miscible when T> T uc  Because of thermal motion of molecules  Gibbs energy of mixing is negative  Lower c. s. Temperature(T lc ) Two components are more miscible because they form a weak complex

44 Water(A) & 2-methyl-1-propanol(B)

45 Liquid-solid phase diagrams  A system of Two metals (alloy) At x A = a1, molten liquid composition Liquid + A (pure solid) B richer solution b3 + pure solid A At x A = e, almost pure A + almost pure B

46 Eutectic composition  Melting without change of composition  Melting at the lowest temperature  Solidifies at a single definite temperature Without gradually unloading one or other of the components from the liquid Microcrystal mixtures  Example Solder 67 wt% Sn + 33 wt% Pb (Te = 183 ℃ )

47 Thermal analysis for eutectic point

48 Ultrapurity and controlled impurity Nine nine pure = 99.9999999%

49

50 Wafer stepper for lithography

51 Ingot pulling  The base material for silicon is a sand. The sand is melted and refined to a high level of purity.  An ingot is drawn from molten pure silicon in a crucible. This ingot starts by dipping a seed crystal in the melt and pulling it back at a controlled speed and temperature profile.  The resulting cylindrical ingot has the single crystal structure required to manufacture active devices.

52 Zone refining

53 exercises  6-4, 6-5, 6-16, 6-18, 6-27

54 References  http://www.whfreeman.com/ECHEM/INDEX.HTML  http://www.schaft.org/eri/people.html  http://cwx.prenhall.com/bookbind/pubbooks/hillchem3/mediali b/media_portfolio/17.html Hill’s general chemistry  http://www.personal.psu.edu/ruc114/egee101.html Oil refining  http://www.theodoregray.com/PeriodicTable/Elements/Solid/in dex.s7.html Various elements  http://www.ami.ac.uk/courses/ami4019_bim/u02/index.asp Wafer processing

55 References  http://fox.rollins.edu/~tlairson/ecom/ E-commerce lecture  http://www.fbh- berlin.de/english/pres/pres_3.html stepper

56 Creative Commons  Attribution-NonCommercial-ShareAlike 2.0  You are free: to copy, distribute, display, and perform the work to make derivative works  Under the following conditions: Attribution. You must give the original author credit. Noncommercial. You may not use this work for commercial purposes. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.  For any reuse or distribution, you must make clear to others the license terms of this work.  Any of these conditions can be waived if you get permission from the copyright holder.  Your fair use and other rights are in no way affected by the above.


Download ppt "The properties of mixtures Yongsik Lee March 2005."

Similar presentations


Ads by Google