Download presentation
Presentation is loading. Please wait.
Published byBaldric Howard Modified over 9 years ago
1
Performance Optimization Getting your programs to run faster
2
Why optimize Better turn-around on jobs Run more programs/scenarios Release resources to other applications You want the job to finish before you retire
3
Ways to get more performance Run on bigger, faster hardware clock speed, more memory, … Tweak your algorithm Optimize your code
4
Loop Unrolling Converting passes of a loop into in-line streams of code Useful when loops do calculations on data in arrays Unrolling can take advantage of pipeline processing units in processors Compiler may preload operands into CPU registers
5
Loop Unrolling – disadvantages may be limited by the number of Floating point registers Pentium III: 8 Pentium 4: 8 Itanium: 128
6
Loop Unrolling – simple example Loop do i=1,n a(i) = b(i) +x*c(i) enddo Unrolled Loop do i=1,n,4 a(i) = b(i) +x*c(i) a(i+1) = b(i+1) +x*c(i+1) a(i+2) = b(i+2) +x*c(i+2) a(i+3) = b(i+3) +x*c(i+3) enddo
7
Loop Unrolling – simple example Performance – Rolled P3 550mhz – 13 mflops Itanium – 30 mflops Performance Unrolled P3 550mhz – 30 mflops Itanium – 107 mflops *from: LCI and NCSA
8
Loop Unrolling int a[100]; for (i=0;i<100;i++){ a[i] = a[i] * 2; } int a[100]; for (i=0;i<100;i+=5){ a[i] = a[i] * 2; a[i+1]=a[i+1]*2; a[i+2]=a[i+2]*2; a[i+3]=a[i+3]*2; a[i+4]=a[i+4]*2; }
9
Loop unrolling int a[10][10]; for (i=0;i<10;i++){ for (j=0;j<10;j++) { a[i][j] = a[i][j] *2;} int a[10][10]; for (i=0;i<10;i++){ a[i][0]=a[i][0]*2; a[i][1]=a[i][1]*2; a[i][2]=a[i][2]*2; a[i][3]=a[i][3]*2; a[i][4]=a[i][4]*2; a[i][5]=a[i][5]*2; a[i][6]=a[i][6]*2; a[i][7]=a[i][7]*2; a[i][8]=a[i][8]*2; a[i][9]=a[i][9]*2;}
10
Loop unrolling – Matrix Dot Product float a[100]; float b[100]; float z; for (i=0;i<100;i++){ z = z + a[i] * b[i]; } float a[100]; float b[100]; float z; for (i=0;i<100;i+=2){ z = z + a[i] * b[i]; z = z + a[i+1] * b[i+1]; }
11
Unrolling Loops You can do it automatically
12
Unrolling Loops – compiler options GNU Compilers -funroll-loops -funrull-all-loops (not recommended) PGI Compilers -Munroll -Munroll=c:N -Munroll=n:M
13
Unrolling Loops – Compiler Options Intel Compilers -unrollM (up to M times) -unroll
14
Design your program to minimize cache faults Align data arrays with cache boundaries
15
If your algorithm has repetitive iterations across specific rows or columns… try making your array dimensions match the cache buffer size of your computer i.e. if you array is 1000 x 1000 (single byte integers) and you have a 1024 byte cache… allocate the array as 1024 x 1024
16
Align data arrays with cache boundaries..or if you array is 500x500 … allocate it as 512x512
17
Align data arrays with cache boundaries
18
1,11,21,31,41,51,61,7 2,12,22,32,4 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1,7 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6 2,7 3, 1 3, 2 3, 3 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 2, 1 2, 2 2, 3
19
Taking Memory in Order Optimizing the use of cache row major order vs column major order row major -- a(1,1), a(2,1), a(3,1), a(1,2), a(2,2),… column major – a(1,1), a(1,2), a(1,3), a(2,1), a(2,2),…
20
Taking Memory in Order Remember C and Fortran store arrays in the opposite manner C – row major Fortran – column major
21
Taking Memory in Order c Fortran
22
Taking Memory in Order do i=1,m do j=1,n a(i,j)=b(i,j)+c(i) end do do j=1,m do i=1,n a(i,j)=b(i,j)+c(i) end do loop time: 23.42 loop runs at 4.48 Mflops loop time: 2.80 loop runs at 37.48 Mflops
23
Floating Point Division FP Division is very expensive in terms of processor time 20-60 clock cycles to compute Usually not pipelined FP Division required by IEEE “rules”
24
Floating point division – use reciprocal float a[100]; for (i=0;i<100;i++){ a[i]=a[i]/2; } float a[100]; Float denom; denom = 1/2; for (i=0;i<100;i++){ a[i]=a[i]*denom; }
25
Compiler options for IEEE Compatibility PGI Compilers -Knoieee Intel Compilers -mp GNU Compilers can’t do Floating Point Division
26
Compilers can’t optimize if divisor is not scalar Breaks IEEE “rules” May impact portability
27
Function Inlining Build functions/subroutines in as inline parts of the programs code… … rather than functions/subroutines minimizes functions calls (and management of…)
28
Function Inlining Compile with – -Minline compiler tries to inline what it can (meet compiler criteria) -Minline=except:func excludes func from inlining -Minline=func inline only func
29
Function Inlining …Compile with- -Minline=myfile.lib inlines functions from inline library file -Minline=levels:n inlines functions up to n levels of calls usually default = 1
30
MPI Tuning Minimize messages Pointers/counts MPI Derived datatypes MPI_Pack/MPI_Unpack Using shared memory for message passing #PBS –l nodes=6:ppn=1 … but… #PBS –l nodes=3:ppn=2 … is better.
31
Compiler optimizations -O0 –no optimization -O1 –local optimization, register allocation -O2 –local/limited global optimization -O3 –aggressive global optimization -Munroll – loop unrolling -Mvect - vectorization -Minline – function inlining
32
gcc Compiler Optimatizations http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html See:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.