Download presentation
Presentation is loading. Please wait.
Published byJonas Craig Modified over 9 years ago
1
Friday meeting Nawin Juntong Halloween-2008
2
σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2D ABCI Δ (%) ECHO 2D ABCIΔ (%) ECHO 2D ABCI Δ (%) TESLA k L [V/pC]9.8910.041.5211.5611.822.2517.7218.464.18 k T [V/pC/m]18.3618.520.8715.4115.611.3010.3810.571.83 ICHIRO k L [V/pC]12.8913.031.0915.3215.571.6325.1925.772.30 k T [V/pC/m]28.1428.260.4323.9424.060.5017.0317.120.53 RE- ENTRANT k L [V/pC]11.0111.151.2713.0813.341.9921.2521.913.11 k T [V/pC/m]21.1721.300.6117.9618.141.0012.7012.851.18 ECHO 2D and ABCI comparison TESLA – CDR (σ z = 0.7mm) Longitudinal loss factor (k L )10.2 V/pC Transverse loss factor (k T )15.1 V/pC/m TTF – DR (σ z = 1mm) HOM loss factor (k L )9.24 V/pC Values from papers for TESLA structure ICHIRO RE-ENTRANT TESLA ECHO 2D mesh= σ z /5, ABCI mesh= σ z /10,
3
TTF-Style Coupler Mesh (cells) G.BurtG.Burt modifiedG.HoffstaetterG.Hoffstaetter use scale B 46267259.58-815.16i--122.28+768.95i115.99+738.71i 68256071.67-786.19i--138.37+733.07i130.24+707.57i 98728022.74-606.98i--32.61+577.22i32.71+575.49i 140364942.07-212.97i69.84+178.68i70.72+178.34i67.12+167.71i Infinite21.53-110.34i--19.73+84.54i19.74+91.03i 9 cells run Mesh (cells) G.BurtG.Burt modifiedG.HoffstaetterG.Hoffstaetter use scale B 35208018.21-737.33i--78.74+699.26i73.99+674.38i 51086031.46-600.53i--36.65+573.44i36.03+572.98i 72540025.40-210.92i--52.21+180.14i49.44+179.38i 96930623.41-167.22i47.00+137.05i47.41+136.91i45.49+128.91i 119416027.20-209.92i--47.61+136.51i46.99+210.04i Infinite29.42+112.34i--26.83-4.66i36.38+33.98i 4.5 cells run Non identical cells
4
RF Coupler kick comparison kxUpstreamDownstreamOnly Power CP My results-- 19.74+91.03i I. Zagorodnov 1 -57.1+6.6i-25+51.5i-- V.Yakovlev 2 -68.8+3.7i-36.5+66.1i35.6+76.5i M. Dohlus 3 -57+7i-23+52i34.3+55.7i 2 N. Solyak 4 -68.8+3.7i-36.5+66.1i-- UpstreamDownstream 1 ILC Workshop, DESY, May 2007. 2 Wakefest07,RF coupler kick. 3 MOPP013, EPAC08. 4 MOPP042, EPAC08.
5
k x is constant when vary the phase Φ k
6
HOM included simulation -Extract HOM geometry from Slava’s sat file in HFSS into new separated sat file for each part. -Import new sat files into MWS. -Tested simulation run with 20 lines/wavelength meshing in eigenmode solution. TDR (Z. Li @wakefest2007) NAWIN (MWS drawing by N. Juntong)
7
NEXT Obtain the rf-kick results from the simulation on fundamental mode and HOM couplers with MWS. Attend CAS2008 at Frascati, Italy on 2-14 November 2008.
8
BACK UP Slides
9
1.Combine 2 SW fields to get TW fields 2.Integrate Lorentz force to get the change of momentum 3.Transverse kick factor is a ratio of the change of transverse momentum to the change of longitudinal momentum How to calculate kick factor (Dr. G.Burt method) PEC bc. PMC bc.
10
1.Combine 2 SW fields to get TW fields 2.Integrate Lorentz force to get the change of momentum 3.Transverse kick factor is a ratio of the change of transverse momentum to the change of longitudinal momentum How to calculate kick factor (B. Buckley and G.H. Hoffstaetter method) MWS from fields theis ˆ A PRST-AB 10,111002(2007),Cornell-ERL-06-02
11
TESLA-TTF beam pipe cavity TESLA 2001-33 TESLA – CDR (σ z = 0.7mm) Longitudinal loss factor (k L )10.2 V/pC Transverse loss factor (k T )15.1 V/pC/m TTF – DR (σ z = 1mm) HOM loss factor (k L )9.24 V/pC Parameters σ z = 1 mmσ z = 0.7 mmσ z = 0.3 mm ECHO 2DABCIECHO 2DABCIECHO 2DABCI Longitudinal loss factor (k L ) [V/pC]9.8910.0411.5611.8217.7218.46 Transverse loss factor (k T ) [V/pC/m]18.3618.5215.4115.6110.3810.57
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.